Analysis Software
Documentation for sPHENIX simulation software
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
md5.cc
Go to the documentation of this file. Or view the newest version in sPHENIX GitHub for file md5.cc
1 /*
2  Copyright (C) 1999 Aladdin Enterprises. All rights reserved.
3 
4  This software is provided 'as-is', without any express or implied
5  warranty. In no event will the authors be held liable for any damages
6  arising from the use of this software.
7 
8  Permission is granted to anyone to use this software for any purpose,
9  including commercial applications, and to alter it and redistribute it
10  freely, subject to the following restrictions:
11 
12  1. The origin of this software must not be misrepresented; you must not
13  claim that you wrote the original software. If you use this software
14  in a product, an acknowledgment in the product documentation would be
15  appreciated but is not required.
16  2. Altered source versions must be plainly marked as such, and must not be
17  misrepresented as being the original software.
18  3. This notice may not be removed or altered from any source distribution.
19 
20  L. Peter Deutsch
21  ghost@aladdin.com
22 
23  */
24 /*
25  This code implements the MD5 Algorithm defined in RFC 1321.
26  It is derived directly from the text of the RFC and not from the
27  reference implementation.
28 
29  The original and principal author of ansi2knr is L. Peter Deutsch
30  <ghost@aladdin.com>. Other authors are noted in the change history
31  that follows (in reverse chronological order):
32 
33  1999-05-03 lpd Original version.
34  */
35 /*$Id: md5.cc,v 1.1 2001/04/24 01:47:20 purschke Exp $ */
36 
37 #include "md5.h"
38 
39 #include <string.h>
40 
41 
42 #ifdef TEST
43 /*
44  * Compile with -DTEST to create a self-contained executable test program.
45  * The test program should print out the same values as given in section
46  * A.5 of RFC 1321, reproduced below.
47  */
48 #include <string.h>
49 main()
50 {
51  static const char *const test[7] = {
52  "", /*d41d8cd98f00b204e9800998ecf8427e*/
53  "a", /*0cc175b9c0f1b6a831c399e269772661*/
54  "abc", /*900150983cd24fb0d6963f7d28e17f72*/
55  "message digest", /*f96b697d7cb7938d525a2f31aaf161d0*/
56  "abcdefghijklmnopqrstuvwxyz", /*c3fcd3d76192e4007dfb496cca67e13b*/
57  "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
58  /*d174ab98d277d9f5a5611c2c9f419d9f*/
59  "12345678901234567890123456789012345678901234567890123456789012345678901234567890" /*57edf4a22be3c955ac49da2e2107b67a*/
60  };
61  int i;
62 
63  for (i = 0; i < 7; ++i) {
65  md5_byte_t digest[16];
66  int di;
67 
68  md5_init(&state);
69  md5_append(&state, (const md5_byte_t *)test[i], strlen(test[i]));
70  md5_finish(&state, digest);
71  printf("MD5 (\"%s\") = ", test[i]);
72  for (di = 0; di < 16; ++di)
73  printf("%02x", digest[di]);
74  printf("\n");
75  }
76  return 0;
77 }
78 #endif /* TEST */
79 
80 
81 /*
82  * For reference, here is the program that computed the T values.
83  */
84 #if 0
85 #include <math.h>
86 main()
87 {
88  int i;
89  for (i = 1; i <= 64; ++i) {
90  unsigned long v = (unsigned long)(4294967296.0 * fabs(sin((double)i)));
91  printf("#define T%d 0x%08lx\n", i, v);
92  }
93  return 0;
94 }
95 #endif
96 /*
97  * End of T computation program.
98  */
99 #define T1 0xd76aa478
100 #define T2 0xe8c7b756
101 #define T3 0x242070db
102 #define T4 0xc1bdceee
103 #define T5 0xf57c0faf
104 #define T6 0x4787c62a
105 #define T7 0xa8304613
106 #define T8 0xfd469501
107 #define T9 0x698098d8
108 #define T10 0x8b44f7af
109 #define T11 0xffff5bb1
110 #define T12 0x895cd7be
111 #define T13 0x6b901122
112 #define T14 0xfd987193
113 #define T15 0xa679438e
114 #define T16 0x49b40821
115 #define T17 0xf61e2562
116 #define T18 0xc040b340
117 #define T19 0x265e5a51
118 #define T20 0xe9b6c7aa
119 #define T21 0xd62f105d
120 #define T22 0x02441453
121 #define T23 0xd8a1e681
122 #define T24 0xe7d3fbc8
123 #define T25 0x21e1cde6
124 #define T26 0xc33707d6
125 #define T27 0xf4d50d87
126 #define T28 0x455a14ed
127 #define T29 0xa9e3e905
128 #define T30 0xfcefa3f8
129 #define T31 0x676f02d9
130 #define T32 0x8d2a4c8a
131 #define T33 0xfffa3942
132 #define T34 0x8771f681
133 #define T35 0x6d9d6122
134 #define T36 0xfde5380c
135 #define T37 0xa4beea44
136 #define T38 0x4bdecfa9
137 #define T39 0xf6bb4b60
138 #define T40 0xbebfbc70
139 #define T41 0x289b7ec6
140 #define T42 0xeaa127fa
141 #define T43 0xd4ef3085
142 #define T44 0x04881d05
143 #define T45 0xd9d4d039
144 #define T46 0xe6db99e5
145 #define T47 0x1fa27cf8
146 #define T48 0xc4ac5665
147 #define T49 0xf4292244
148 #define T50 0x432aff97
149 #define T51 0xab9423a7
150 #define T52 0xfc93a039
151 #define T53 0x655b59c3
152 #define T54 0x8f0ccc92
153 #define T55 0xffeff47d
154 #define T56 0x85845dd1
155 #define T57 0x6fa87e4f
156 #define T58 0xfe2ce6e0
157 #define T59 0xa3014314
158 #define T60 0x4e0811a1
159 #define T61 0xf7537e82
160 #define T62 0xbd3af235
161 #define T63 0x2ad7d2bb
162 #define T64 0xeb86d391
163 
164 static void
165 md5_process(md5_state_t *pms, const md5_byte_t *data /*[64]*/)
166 {
167  md5_word_t
168  a = pms->abcd[0], b = pms->abcd[1],
169  c = pms->abcd[2], d = pms->abcd[3];
170  md5_word_t t;
171 
172 #ifndef ARCH_IS_BIG_ENDIAN
173 # define ARCH_IS_BIG_ENDIAN 1 /* slower, default implementation */
174 #endif
175 #if ARCH_IS_BIG_ENDIAN
176 
177  /*
178  * On big-endian machines, we must arrange the bytes in the right
179  * order. (This also works on machines of unknown byte order.)
180  */
181  md5_word_t X[16];
182  const md5_byte_t *xp = data;
183  int i;
184 
185  for (i = 0; i < 16; ++i, xp += 4)
186  X[i] = xp[0] + (xp[1] << 8) + (xp[2] << 16) + (xp[3] << 24);
187 
188 #else /* !ARCH_IS_BIG_ENDIAN */
189 
190  /*
191  * On little-endian machines, we can process properly aligned data
192  * without copying it.
193  */
194  md5_word_t xbuf[16];
195  const md5_word_t *X;
196 
197  if (!((data - (const md5_byte_t *)0) & 3)) {
198  /* data are properly aligned */
199  X = (const md5_word_t *)data;
200  } else {
201  /* not aligned */
202  memcpy(xbuf, data, 64);
203  X = xbuf;
204  }
205 #endif
206 
207 #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
208 
209  /* Round 1. */
210  /* Let [abcd k s i] denote the operation
211  a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */
212 #define F(x, y, z) (((x) & (y)) | (~(x) & (z)))
213 #define SET(a, b, c, d, k, s, Ti)\
214  t = a + F(b,c,d) + X[k] + Ti;\
215  a = ROTATE_LEFT(t, s) + b
216  /* Do the following 16 operations. */
217  SET(a, b, c, d, 0, 7, T1);
218  SET(d, a, b, c, 1, 12, T2);
219  SET(c, d, a, b, 2, 17, T3);
220  SET(b, c, d, a, 3, 22, T4);
221  SET(a, b, c, d, 4, 7, T5);
222  SET(d, a, b, c, 5, 12, T6);
223  SET(c, d, a, b, 6, 17, T7);
224  SET(b, c, d, a, 7, 22, T8);
225  SET(a, b, c, d, 8, 7, T9);
226  SET(d, a, b, c, 9, 12, T10);
227  SET(c, d, a, b, 10, 17, T11);
228  SET(b, c, d, a, 11, 22, T12);
229  SET(a, b, c, d, 12, 7, T13);
230  SET(d, a, b, c, 13, 12, T14);
231  SET(c, d, a, b, 14, 17, T15);
232  SET(b, c, d, a, 15, 22, T16);
233 #undef SET
234 
235  /* Round 2. */
236  /* Let [abcd k s i] denote the operation
237  a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */
238 #define G(x, y, z) (((x) & (z)) | ((y) & ~(z)))
239 #define SET(a, b, c, d, k, s, Ti)\
240  t = a + G(b,c,d) + X[k] + Ti;\
241  a = ROTATE_LEFT(t, s) + b
242  /* Do the following 16 operations. */
243  SET(a, b, c, d, 1, 5, T17);
244  SET(d, a, b, c, 6, 9, T18);
245  SET(c, d, a, b, 11, 14, T19);
246  SET(b, c, d, a, 0, 20, T20);
247  SET(a, b, c, d, 5, 5, T21);
248  SET(d, a, b, c, 10, 9, T22);
249  SET(c, d, a, b, 15, 14, T23);
250  SET(b, c, d, a, 4, 20, T24);
251  SET(a, b, c, d, 9, 5, T25);
252  SET(d, a, b, c, 14, 9, T26);
253  SET(c, d, a, b, 3, 14, T27);
254  SET(b, c, d, a, 8, 20, T28);
255  SET(a, b, c, d, 13, 5, T29);
256  SET(d, a, b, c, 2, 9, T30);
257  SET(c, d, a, b, 7, 14, T31);
258  SET(b, c, d, a, 12, 20, T32);
259 #undef SET
260 
261  /* Round 3. */
262  /* Let [abcd k s t] denote the operation
263  a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */
264 #define H(x, y, z) ((x) ^ (y) ^ (z))
265 #define SET(a, b, c, d, k, s, Ti)\
266  t = a + H(b,c,d) + X[k] + Ti;\
267  a = ROTATE_LEFT(t, s) + b
268  /* Do the following 16 operations. */
269  SET(a, b, c, d, 5, 4, T33);
270  SET(d, a, b, c, 8, 11, T34);
271  SET(c, d, a, b, 11, 16, T35);
272  SET(b, c, d, a, 14, 23, T36);
273  SET(a, b, c, d, 1, 4, T37);
274  SET(d, a, b, c, 4, 11, T38);
275  SET(c, d, a, b, 7, 16, T39);
276  SET(b, c, d, a, 10, 23, T40);
277  SET(a, b, c, d, 13, 4, T41);
278  SET(d, a, b, c, 0, 11, T42);
279  SET(c, d, a, b, 3, 16, T43);
280  SET(b, c, d, a, 6, 23, T44);
281  SET(a, b, c, d, 9, 4, T45);
282  SET(d, a, b, c, 12, 11, T46);
283  SET(c, d, a, b, 15, 16, T47);
284  SET(b, c, d, a, 2, 23, T48);
285 #undef SET
286 
287  /* Round 4. */
288  /* Let [abcd k s t] denote the operation
289  a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */
290 #define I(x, y, z) ((y) ^ ((x) | ~(z)))
291 #define SET(a, b, c, d, k, s, Ti)\
292  t = a + I(b,c,d) + X[k] + Ti;\
293  a = ROTATE_LEFT(t, s) + b
294  /* Do the following 16 operations. */
295  SET(a, b, c, d, 0, 6, T49);
296  SET(d, a, b, c, 7, 10, T50);
297  SET(c, d, a, b, 14, 15, T51);
298  SET(b, c, d, a, 5, 21, T52);
299  SET(a, b, c, d, 12, 6, T53);
300  SET(d, a, b, c, 3, 10, T54);
301  SET(c, d, a, b, 10, 15, T55);
302  SET(b, c, d, a, 1, 21, T56);
303  SET(a, b, c, d, 8, 6, T57);
304  SET(d, a, b, c, 15, 10, T58);
305  SET(c, d, a, b, 6, 15, T59);
306  SET(b, c, d, a, 13, 21, T60);
307  SET(a, b, c, d, 4, 6, T61);
308  SET(d, a, b, c, 11, 10, T62);
309  SET(c, d, a, b, 2, 15, T63);
310  SET(b, c, d, a, 9, 21, T64);
311 #undef SET
312 
313  /* Then perform the following additions. (That is increment each
314  of the four registers by the value it had before this block
315  was started.) */
316  pms->abcd[0] += a;
317  pms->abcd[1] += b;
318  pms->abcd[2] += c;
319  pms->abcd[3] += d;
320 }
321 
322 void
324 {
325  pms->count[0] = pms->count[1] = 0;
326  pms->abcd[0] = 0x67452301;
327  pms->abcd[1] = 0xefcdab89;
328  pms->abcd[2] = 0x98badcfe;
329  pms->abcd[3] = 0x10325476;
330 }
331 
332 void
333 md5_append(md5_state_t *pms, const md5_byte_t *data, int nbytes)
334 {
335  const md5_byte_t *p = data;
336  int left = nbytes;
337  int offset = (pms->count[0] >> 3) & 63;
338  md5_word_t nbits = (md5_word_t)(nbytes << 3);
339 
340  if (nbytes <= 0)
341  return;
342 
343  /* Update the message length. */
344  pms->count[1] += nbytes >> 29;
345  pms->count[0] += nbits;
346  if (pms->count[0] < nbits)
347  pms->count[1]++;
348 
349  /* Process an initial partial block. */
350  if (offset) {
351  int copy = (offset + nbytes > 64 ? 64 - offset : nbytes);
352 
353  memcpy(pms->buf + offset, p, copy);
354  if (offset + copy < 64)
355  return;
356  p += copy;
357  left -= copy;
358  md5_process(pms, pms->buf);
359  }
360 
361  /* Process full blocks. */
362  for (; left >= 64; p += 64, left -= 64)
363  md5_process(pms, p);
364 
365  /* Process a final partial block. */
366  if (left)
367  memcpy(pms->buf, p, left);
368 }
369 
370 void
372 {
373  static const md5_byte_t pad[64] = {
374  0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
375  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
376  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
377  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
378  };
379  md5_byte_t data[8];
380  int i;
381 
382  /* Save the length before padding. */
383  for (i = 0; i < 8; ++i)
384  data[i] = (md5_byte_t)(pms->count[i >> 2] >> ((i & 3) << 3));
385  /* Pad to 56 bytes mod 64. */
386  md5_append(pms, pad, ((55 - (pms->count[0] >> 3)) & 63) + 1);
387  /* Append the length. */
388  md5_append(pms, data, 8);
389  for (i = 0; i < 16; ++i)
390  digest[i] = (md5_byte_t)(pms->abcd[i >> 2] >> ((i & 3) << 3));
391 }