Analysis Software
Documentation for sPHENIX simulation software
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
ParticleDataTable.hpp
Go to the documentation of this file. Or view the newest version in sPHENIX GitHub for file ParticleDataTable.hpp
1 // This file is part of the Acts project.
2 //
3 // Copyright (C) 2020 CERN for the benefit of the Acts project
4 //
5 // This Source Code Form is subject to the terms of the Mozilla Public
6 // License, v. 2.0. If a copy of the MPL was not distributed with this
7 // file, You can obtain one at http://mozilla.org/MPL/2.0/.
8 
9 // The entries within this file have been automatically created using the
10 // particle data files from the 2019 edition of the Review of Particle Physics
11 // by the Berkeley Particle Data Group.
12 
13 #pragma once
14 
15 #include <cstdint>
16 
17 // Rows within the particle data table are sorted by their signed PDG particle
18 // number and are then stored column-wise. Since the PDG particle number column
19 // is sorted it can be used to quickly search for the index of a particle
20 // within all column arrays.
21 
22 static constexpr uint32_t kParticlesCount = 536u;
23 
24 static constexpr int32_t kParticlesPdgNumber[kParticlesCount] = {
25  -9020213, -9010213, -9010211, -9000321, -9000311, -9000215, -9000213,
26  -9000211, -204126, -203338, -203326, -203322, -203316, -203312,
27  -104324, -104322, -104314, -104312, -104122, -103326, -103316,
28  -100323, -100313, -100213, -100211, -53122, -43122, -42212,
29  -42112, -33122, -32224, -32214, -32212, -32124, -32114,
30  -32112, -31214, -31114, -30323, -30313, -30213, -23224,
31  -23222, -23214, -23212, -23126, -23124, -23122, -23114,
32  -23112, -22224, -22222, -22214, -22212, -22124, -22122,
33  -22114, -22112, -21214, -21212, -21114, -21112, -20433,
34  -20325, -20323, -20315, -20313, -20213, -14122, -13324,
35  -13314, -13226, -13224, -13222, -13216, -13214, -13212,
36  -13126, -13124, -13122, -13116, -13114, -13112, -12226,
37  -12224, -12222, -12216, -12214, -12212, -12126, -12122,
38  -12116, -12114, -12112, -11216, -11212, -11116, -11114,
39  -11112, -10433, -10431, -10423, -10421, -10411, -10325,
40  -10323, -10321, -10315, -10313, -10311, -10215, -10213,
41  -10211, -5332, -5232, -5224, -5222, -5132, -5122,
42  -5114, -5112, -4334, -4332, -4324, -4322, -4314,
43  -4312, -4232, -4224, -4222, -4214, -4212, -4132,
44  -4122, -4114, -4112, -3334, -3324, -3322, -3314,
45  -3312, -3228, -3226, -3224, -3222, -3218, -3216,
46  -3214, -3212, -3128, -3126, -3124, -3122, -3118,
47  -3116, -3114, -3112, -2228, -2226, -2224, -2222,
48  -2218, -2216, -2214, -2212, -2128, -2126, -2124,
49  -2122, -2118, -2116, -2114, -2112, -1218, -1216,
50  -1214, -1212, -1118, -1116, -1114, -1112, -541,
51  -535, -533, -531, -525, -523, -521, -515,
52  -513, -511, -435, -433, -431, -425, -423,
53  -421, -415, -413, -411, -329, -327, -325,
54  -323, -321, -319, -317, -315, -313, -311,
55  -219, -217, -215, -213, -211, -24, -16,
56  -15, -14, -13, -12, -11, -6, -5,
57  -4, -3, -2, -1, 1, 2, 3,
58  4, 5, 6, 11, 12, 13, 14,
59  15, 16, 21, 22, 23, 24, 25,
60  111, 113, 115, 117, 119, 130, 211,
61  213, 215, 217, 219, 221, 223, 225,
62  227, 229, 310, 311, 313, 315, 317,
63  319, 321, 323, 325, 327, 329, 331,
64  333, 335, 337, 411, 413, 415, 421,
65  423, 425, 431, 433, 435, 441, 443,
66  445, 511, 513, 515, 521, 523, 525,
67  531, 533, 535, 541, 553, 555, 1112,
68  1114, 1116, 1118, 1212, 1214, 1216, 1218,
69  2112, 2114, 2116, 2118, 2122, 2124, 2126,
70  2128, 2212, 2214, 2216, 2218, 2222, 2224,
71  2226, 2228, 3112, 3114, 3116, 3118, 3122,
72  3124, 3126, 3128, 3212, 3214, 3216, 3218,
73  3222, 3224, 3226, 3228, 3312, 3314, 3322,
74  3324, 3334, 4112, 4114, 4122, 4132, 4212,
75  4214, 4222, 4224, 4232, 4312, 4314, 4322,
76  4324, 4332, 4334, 5112, 5114, 5122, 5132,
77  5222, 5224, 5232, 5332, 10111, 10113, 10115,
78  10211, 10213, 10215, 10221, 10223, 10225, 10311,
79  10313, 10315, 10321, 10323, 10325, 10331, 10333,
80  10411, 10421, 10423, 10431, 10433, 10441, 10443,
81  10551, 10553, 11112, 11114, 11116, 11212, 11216,
82  12112, 12114, 12116, 12122, 12126, 12212, 12214,
83  12216, 12222, 12224, 12226, 13112, 13114, 13116,
84  13122, 13124, 13126, 13212, 13214, 13216, 13222,
85  13224, 13226, 13314, 13324, 14122, 20113, 20213,
86  20223, 20313, 20315, 20323, 20325, 20333, 20433,
87  20443, 20553, 20555, 21112, 21114, 21212, 21214,
88  22112, 22114, 22122, 22124, 22212, 22214, 22222,
89  22224, 23112, 23114, 23122, 23124, 23126, 23212,
90  23214, 23222, 23224, 30113, 30213, 30223, 30313,
91  30323, 30443, 31114, 31214, 32112, 32114, 32124,
92  32212, 32214, 32224, 33122, 42112, 42212, 43122,
93  53122, 100111, 100113, 100211, 100213, 100221, 100313,
94  100323, 100331, 100333, 100441, 100443, 100445, 100553,
95  100555, 103316, 103326, 104122, 104312, 104314, 104322,
96  104324, 110551, 120553, 200553, 203312, 203316, 203322,
97  203326, 203338, 204126, 300553, 1000223, 9000111, 9000113,
98  9000115, 9000211, 9000213, 9000215, 9000221, 9000311, 9000321,
99  9000443, 9000553, 9010111, 9010113, 9010211, 9010213, 9010221,
100  9010443, 9010553, 9020113, 9020213, 9020221, 9020443, 9030221,
101  9050225, 9060225, 9080225, 9090225,
102 };
103 
104 static constexpr int8_t kParticlesThreeCharge[kParticlesCount] = {
105  -3, -3, -3, -3, 0, -3, -3, -3, -3, 3, 0, 0, 3, 3, -3, -3, 0, 0, -3,
106  0, 3, -3, 0, -3, -3, 0, 0, -3, 0, 0, -6, -3, -3, -3, 0, 0, 0, 3,
107  -3, 0, -3, -3, -3, 0, 0, 0, 0, 0, 3, 3, -6, -6, -3, -3, -3, -3, 0,
108  0, 0, 0, 3, 3, -3, -3, -3, 0, 0, -3, -3, 0, 3, -3, -3, -3, 0, 0,
109  0, 0, 0, 0, 3, 3, 3, -6, -6, -6, -3, -3, -3, -3, -3, 0, 0, 0, 0,
110  0, 3, 3, 3, -3, -3, 0, 0, -3, -3, -3, -3, 0, 0, 0, -3, -3, -3, 3,
111  0, -3, -3, 3, 0, 3, 3, 0, 0, -3, -3, 0, 0, -3, -6, -6, -3, -3, 0,
112  -3, 0, 0, 3, 0, 0, 3, 3, -3, -3, -3, -3, 0, 0, 0, 0, 0, 0, 0,
113  0, 3, 3, 3, 3, -6, -6, -6, -6, -3, -3, -3, -3, -3, -3, -3, -3, 0, 0,
114  0, 0, 0, 0, 0, 0, 3, 3, 3, 3, -3, 0, 0, 0, -3, -3, -3, 0, 0,
115  0, -3, -3, -3, 0, 0, 0, -3, -3, -3, -3, -3, -3, -3, -3, 0, 0, 0, 0,
116  0, -3, -3, -3, -3, -3, -3, 0, 3, 0, 3, 0, 3, -2, 1, -2, 1, -2, 1,
117  -1, 2, -1, 2, -1, 2, -3, 0, -3, 0, -3, 0, 0, 0, 0, 3, 0, 0, 0,
118  0, 0, 0, 0, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
119  0, 3, 3, 3, 3, 3, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 3, 3, 3,
120  0, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 3, 0, 0, -3, -3, -3, -3,
121  0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, 6, 6, 6,
122  6, -3, -3, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, -3, -3,
123  0, 0, -3, 0, 0, 3, 0, 3, 3, 6, 6, 3, 0, 0, 3, 3, 0, 0, -3,
124  -3, 0, -3, 3, 3, 0, -3, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, 0, 0,
125  3, 3, 3, 0, 0, 3, 0, 0, 3, 3, 0, 0, 0, 0, -3, -3, -3, 0, 0,
126  0, 0, 0, 3, 3, 3, 3, 3, 6, 6, 6, -3, -3, -3, 0, 0, 0, 0, 0,
127  0, 3, 3, 3, -3, 0, 3, 0, 3, 0, 0, 0, 3, 3, 0, 3, 0, 0, 0,
128  -3, -3, 0, 0, 0, 0, 3, 3, 3, 3, 6, 6, -3, -3, 0, 0, 0, 0, 0,
129  3, 3, 0, 3, 0, 0, 3, 0, -3, 0, 0, 0, 3, 3, 3, 6, 0, 0, 3,
130  0, 0, 0, 0, 3, 3, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, -3, 0, 3,
131  0, 0, 3, 3, 0, 0, 0, -3, -3, 0, 0, -3, 3, 0, 0, 0, 0, 0, 3,
132  3, 3, 0, 0, 3, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 3, 0, 0, 0,
133  0, 0, 0, 0,
134 };
135 
136 static constexpr float kParticlesMassMeV[kParticlesCount] = {
137  1655.0f, 1660.0f, 1810.0f, 824.0f, 824.0f,
138  1700.0f, 1354.0f, 980.0f, 2881.63f, 2252.0f,
139  2025.0f, 1690.0f, 2025.0f, 1690.0f, 2792.4f,
140  2816.73f, 2794.1f, 2820.26f, 2628.11f, 1950.0f,
141  1950.0f, 1421.0f, 1421.0f, 1465.0f, 1300.0f,
142  1810.0f, 1800.0f, 1710.0f, 1710.0f, 1670.0f,
143  1570.0f, 1570.0f, 1650.0f, 1720.0f, 1570.0f,
144  1650.0f, 1720.0f, 1570.0f, 1718.0f, 1718.0f,
145  1720.0f, 1940.0f, 1750.0f, 1940.0f, 1750.0f,
146  2110.0f, 1890.0f, 1600.0f, 1940.0f, 1750.0f,
147  1920.0f, 1900.0f, 1920.0f, 1530.0f, 1720.0f,
148  1900.0f, 1920.0f, 1530.0f, 1720.0f, 1900.0f,
149  1920.0f, 1900.0f, 2459.5f, 1819.0f, 1403.0f,
150  1819.0f, 1403.0f, 1230.0f, 2592.25f, 1823.0f,
151  1823.0f, 1915.0f, 1670.0f, 1660.0f, 1915.0f,
152  1670.0f, 1660.0f, 1830.0f, 1690.0f, 1405.1f,
153  1915.0f, 1670.0f, 1660.0f, 1950.0f, 1710.0f,
154  1860.0f, 1685.0f, 1710.0f, 1440.0f, 1950.0f,
155  1860.0f, 1685.0f, 1710.0f, 1440.0f, 1950.0f,
156  1860.0f, 1950.0f, 1710.0f, 1860.0f, 2535.11f,
157  2317.8f, 2420.8f, 2300.0f, 2300.0f, 1773.0f,
158  1272.0f, 1430.0f, 1773.0f, 1272.0f, 1430.0f,
159  1670.6f, 1229.5f, 1467.0f, 6046.1f, 5791.9f,
160  5830.32f, 5810.56f, 5797.0f, 5619.6f, 5834.74f,
161  5815.64f, 2765.9f, 2695.2f, 2645.57f, 2578.4f,
162  2646.38f, 2579.2f, 2467.93f, 2518.41f, 2453.97f,
163  2517.5f, 2452.9f, 2470.91f, 2286.46f, 2518.48f,
164  2453.75f, 1672.45f, 1531.8f, 1314.86f, 1535.0f,
165  1321.71f, 2030.0f, 1775.0f, 1382.8f, 1189.37f,
166  2030.0f, 1775.0f, 1383.7f, 1192.642f, 2100.0f,
167  1820.0f, 1519.5f, 1115.683f, 2030.0f, 1775.0f,
168  1387.2f, 1197.449f, 1930.0f, 1880.0f, 1232.0f,
169  1610.0f, 1930.0f, 1675.0f, 1232.0f, 938.272081f,
170  2180.0f, 1880.0f, 1515.0f, 1610.0f, 1930.0f,
171  1675.0f, 1232.0f, 939.565413f, 2180.0f, 1880.0f,
172  1515.0f, 1610.0f, 1930.0f, 1880.0f, 1232.0f,
173  1610.0f, 6274.9f, 5839.85f, 5415.4f, 5366.88f,
174  5739.5f, 5324.7f, 5279.33f, 5739.5f, 5324.7f,
175  5279.64f, 2569.1f, 2112.2f, 1968.34f, 2460.7f,
176  2006.85f, 1864.83f, 2465.4f, 2010.26f, 1869.65f,
177  2045.0f, 1776.0f, 1425.6f, 891.66f, 493.677f,
178  2045.0f, 1776.0f, 1432.4f, 895.55f, 497.611f,
179  1967.0f, 1688.8f, 1316.9f, 775.26f, 139.57061f,
180  80379.0f, 0.0f, 1776.86f, 0.0f, 105.6583745f,
181  0.0f, 0.5109989461f, 173100.0f, 4180.0f, 1270.0f,
182  93.0f, 2.16f, 4.67f, 4.67f, 2.16f,
183  93.0f, 1270.0f, 4180.0f, 173100.0f, 0.5109989461f,
184  0.0f, 105.6583745f, 0.0f, 1776.86f, 0.0f,
185  0.0f, 0.0f, 91187.6f, 80379.0f, 125100.0f,
186  134.977f, 775.26f, 1316.9f, 1688.8f, 1967.0f,
187  497.611f, 139.57061f, 775.26f, 1316.9f, 1688.8f,
188  1967.0f, 547.862f, 782.65f, 1275.5f, 1667.0f,
189  2018.0f, 497.611f, 497.611f, 895.55f, 1432.4f,
190  1776.0f, 2045.0f, 493.677f, 891.66f, 1425.6f,
191  1776.0f, 2045.0f, 957.78f, 1019.461f, 1525.0f,
192  1854.0f, 1869.65f, 2010.26f, 2465.4f, 1864.83f,
193  2006.85f, 2460.7f, 1968.34f, 2112.2f, 2569.1f,
194  2983.9f, 3096.9f, 3556.17f, 5279.64f, 5324.7f,
195  5739.5f, 5279.33f, 5324.7f, 5739.5f, 5366.88f,
196  5415.4f, 5839.85f, 6274.9f, 9460.3f, 9912.21f,
197  1610.0f, 1232.0f, 1880.0f, 1930.0f, 1610.0f,
198  1515.0f, 1880.0f, 2180.0f, 939.565413f, 1232.0f,
199  1675.0f, 1930.0f, 1610.0f, 1515.0f, 1880.0f,
200  2180.0f, 938.272081f, 1232.0f, 1675.0f, 1930.0f,
201  1610.0f, 1232.0f, 1880.0f, 1930.0f, 1197.449f,
202  1387.2f, 1775.0f, 2030.0f, 1115.683f, 1519.5f,
203  1820.0f, 2100.0f, 1192.642f, 1383.7f, 1775.0f,
204  2030.0f, 1189.37f, 1382.8f, 1775.0f, 2030.0f,
205  1321.71f, 1535.0f, 1314.86f, 1531.8f, 1672.45f,
206  2453.75f, 2518.48f, 2286.46f, 2470.91f, 2452.9f,
207  2517.5f, 2453.97f, 2518.41f, 2467.93f, 2579.2f,
208  2646.38f, 2578.4f, 2645.57f, 2695.2f, 2765.9f,
209  5815.64f, 5834.74f, 5619.6f, 5797.0f, 5810.56f,
210  5830.32f, 5791.9f, 6046.1f, 1467.0f, 1229.5f,
211  1670.6f, 1467.0f, 1229.5f, 1670.6f, 1350.0f,
212  1170.0f, 1617.0f, 1430.0f, 1272.0f, 1773.0f,
213  1430.0f, 1272.0f, 1773.0f, 1704.0f, 1416.0f,
214  2300.0f, 2300.0f, 2420.8f, 2317.8f, 2535.11f,
215  3414.71f, 3525.38f, 9859.4f, 9899.3f, 1860.0f,
216  1710.0f, 1950.0f, 1860.0f, 1950.0f, 1440.0f,
217  1710.0f, 1685.0f, 1860.0f, 1950.0f, 1440.0f,
218  1710.0f, 1685.0f, 1860.0f, 1710.0f, 1950.0f,
219  1660.0f, 1670.0f, 1915.0f, 1405.1f, 1690.0f,
220  1830.0f, 1660.0f, 1670.0f, 1915.0f, 1660.0f,
221  1670.0f, 1915.0f, 1823.0f, 1823.0f, 2592.25f,
222  1230.0f, 1230.0f, 1281.9f, 1403.0f, 1819.0f,
223  1403.0f, 1819.0f, 1426.4f, 2459.5f, 3510.67f,
224  9892.878f, 10163.7f, 1900.0f, 1920.0f, 1900.0f,
225  1720.0f, 1530.0f, 1920.0f, 1900.0f, 1720.0f,
226  1530.0f, 1920.0f, 1900.0f, 1920.0f, 1750.0f,
227  1940.0f, 1600.0f, 1890.0f, 2110.0f, 1750.0f,
228  1940.0f, 1750.0f, 1940.0f, 1720.0f, 1720.0f,
229  1670.0f, 1718.0f, 1718.0f, 3773.13f, 1570.0f,
230  1720.0f, 1650.0f, 1570.0f, 1720.0f, 1650.0f,
231  1570.0f, 1570.0f, 1670.0f, 1710.0f, 1710.0f,
232  1800.0f, 1810.0f, 1300.0f, 1465.0f, 1300.0f,
233  1465.0f, 1294.0f, 1421.0f, 1421.0f, 1475.0f,
234  1680.0f, 3637.5f, 3686.097f, 3927.2f, 10023.26f,
235  10268.65f, 1950.0f, 1950.0f, 2628.11f, 2820.26f,
236  2794.1f, 2816.73f, 2792.4f, 10232.5f, 10255.46f,
237  10355.2f, 1690.0f, 2025.0f, 1690.0f, 2025.0f,
238  2252.0f, 2881.63f, 10579.4f, 1425.0f, 980.0f,
239  1354.0f, 1700.0f, 980.0f, 1354.0f, 1700.0f,
240  475.0f, 824.0f, 824.0f, 4039.0f, 10889.9f,
241  1810.0f, 1660.0f, 1810.0f, 1660.0f, 990.0f,
242  4191.0f, 10992.9f, 1655.0f, 1655.0f, 1408.8f,
243  4421.0f, 1506.0f, 1936.0f, 2010.0f, 2297.0f,
244  2350.0f,
245 };
246 
247 static constexpr const char* kParticlesName[kParticlesCount] = {
248  "a(1)(1640)-",
249  "pi(1)(1600)-",
250  "pi(1800)-",
251  "K(0)*(700)-",
252  "K(0)*(700)~0",
253  "a(2)(1700)-",
254  "pi(1)(1400)-",
255  "a(0)(980)-",
256  "Lambda(c)(2880)~-",
257  "Omega(2250)~+",
258  "Xi(2030)~0",
259  "Xi(1690)~0",
260  "Xi(2030)~+",
261  "Xi(1690)~+",
262  "Xi(c)(2790)~-",
263  "Xi(c)(2815)~-",
264  "Xi(c)(2790)~0",
265  "Xi(c)(2815)~0",
266  "Lambda(c)(2625)~-",
267  "Xi(1950)~0",
268  "Xi(1950)~+",
269  "K*(1410)-",
270  "K*(1410)~0",
271  "rho(1450)-",
272  "pi(1300)-",
273  "Lambda(1810)~",
274  "Lambda(1800)~",
275  "N(1710)~-",
276  "N(1710)~0",
277  "Lambda(1670)~",
278  "Delta(1600)~--",
279  "Delta(1600)~-",
280  "N(1650)~-",
281  "N(1720)~-",
282  "Delta(1600)~0",
283  "N(1650)~0",
284  "N(1720)~0",
285  "Delta(1600)~+",
286  "K*(1680)-",
287  "K*(1680)~0",
288  "rho(1700)-",
289  "Sigma(1940)~-",
290  "Sigma(1750)~-",
291  "Sigma(1940)~0",
292  "Sigma(1750)~0",
293  "Lambda(2110)~",
294  "Lambda(1890)~",
295  "Lambda(1600)~",
296  "Sigma(1940)~+",
297  "Sigma(1750)~+",
298  "Delta(1920)~--",
299  "Delta(1910)~--",
300  "Delta(1920)~-",
301  "N(1535)~-",
302  "N(1700)~-",
303  "Delta(1910)~-",
304  "Delta(1920)~0",
305  "N(1535)~0",
306  "N(1700)~0",
307  "Delta(1910)~0",
308  "Delta(1920)~+",
309  "Delta(1910)~+",
310  "D(s1)(2460)-",
311  "K(2)(1820)-",
312  "K(1)(1400)-",
313  "K(2)(1820)~0",
314  "K(1)(1400)~0",
315  "a(1)(1260)-",
316  "Lambda(c)(2595)~-",
317  "Xi(1820)~0",
318  "Xi(1820)~+",
319  "Sigma(1915)~-",
320  "Sigma(1670)~-",
321  "Sigma(1660)~-",
322  "Sigma(1915)~0",
323  "Sigma(1670)~0",
324  "Sigma(1660)~0",
325  "Lambda(1830)~",
326  "Lambda(1690)~",
327  "Lambda(1405)~",
328  "Sigma(1915)~+",
329  "Sigma(1670)~+",
330  "Sigma(1660)~+",
331  "Delta(1930)~--",
332  "Delta(1700)~--",
333  "Delta(1900)~--",
334  "N(1680)~-",
335  "Delta(1700)~-",
336  "N(1440)~-",
337  "Delta(1930)~-",
338  "Delta(1900)~-",
339  "N(1680)~0",
340  "Delta(1700)~0",
341  "N(1440)~0",
342  "Delta(1930)~0",
343  "Delta(1900)~0",
344  "Delta(1930)~+",
345  "Delta(1700)~+",
346  "Delta(1900)~+",
347  "D(s1)(2536)-",
348  "D(s0)*(2317)-",
349  "D(1)(2420)~0",
350  "D(0)*(2300)~0",
351  "D(0)*(2300)-",
352  "K(2)(1770)-",
353  "K(1)(1270)-",
354  "K(0)*(1430)-",
355  "K(2)(1770)~0",
356  "K(1)(1270)~0",
357  "K(0)*(1430)~0",
358  "pi(2)(1670)-",
359  "b(1)(1235)-",
360  "a(0)(1450)-",
361  "Omega(b)~+",
362  "Xi(b)~0",
363  "Sigma(b)*~-",
364  "Sigma(b)~-",
365  "Xi(b)~+",
366  "Lambda(b)~0",
367  "Sigma(b)*~+",
368  "Sigma(b)~+",
369  "Omega(c)(2770)~0",
370  "Omega(c)~0",
371  "Xi(c)(2645)~-",
372  "Xi(c)'~-",
373  "Xi(c)(2645)~0",
374  "Xi(c)'~0",
375  "Xi(c)~-",
376  "Sigma(c)(2520)~--",
377  "Sigma(c)(2455)~--",
378  "Sigma(c)(2520)~-",
379  "Sigma(c)(2455)~-",
380  "Xi(c)~0",
381  "Lambda(c)~-",
382  "Sigma(c)(2520)~0",
383  "Sigma(c)(2455)~0",
384  "Omega~+",
385  "Xi(1530)~0",
386  "Xi~0",
387  "Xi(1530)~+",
388  "Xi~+",
389  "Sigma(2030)~-",
390  "Sigma(1775)~-",
391  "Sigma(1385)~-",
392  "Sigma~-",
393  "Sigma(2030)~0",
394  "Sigma(1775)~0",
395  "Sigma(1385)~0",
396  "Sigma~0",
397  "Lambda(2100)~",
398  "Lambda(1820)~",
399  "Lambda(1520)~",
400  "Lambda~",
401  "Sigma(2030)~+",
402  "Sigma(1775)~+",
403  "Sigma(1385)~+",
404  "Sigma~+",
405  "Delta(1950)~--",
406  "Delta(1905)~--",
407  "Delta(1232)~--",
408  "Delta(1620)~--",
409  "Delta(1950)~-",
410  "N(1675)~-",
411  "Delta(1232)~-",
412  "p~",
413  "N(2190)~-",
414  "Delta(1905)~-",
415  "N(1520)~-",
416  "Delta(1620)~-",
417  "Delta(1950)~0",
418  "N(1675)~0",
419  "Delta(1232)~0",
420  "n~",
421  "N(2190)~0",
422  "Delta(1905)~0",
423  "N(1520)~0",
424  "Delta(1620)~0",
425  "Delta(1950)~+",
426  "Delta(1905)~+",
427  "Delta(1232)~+",
428  "Delta(1620)~+",
429  "B(c)-",
430  "B(s2)*(5840)~0",
431  "B(s)*~0",
432  "B(s)~0",
433  "B(2)*(5747)-",
434  "B*-",
435  "B-",
436  "B(2)*(5747)~0",
437  "B*~0",
438  "B~0",
439  "D(s2)*(2573)-",
440  "D(s)*-",
441  "D(s)-",
442  "D(2)*(2460)~0",
443  "D*(2007)~0",
444  "D~0",
445  "D(2)*(2460)-",
446  "D*(2010)-",
447  "D-",
448  "K(4)*(2045)-",
449  "K(3)*(1780)-",
450  "K(2)*(1430)-",
451  "K*(892)-",
452  "K-",
453  "K(4)*(2045)~0",
454  "K(3)*(1780)~0",
455  "K(2)*(1430)~0",
456  "K*(892)~0",
457  "K~0",
458  "a(4)(1970)-",
459  "rho(3)(1690)-",
460  "a(2)(1320)-",
461  "rho(770)-",
462  "pi-",
463  "W-",
464  "nu(tau)~",
465  "tau+",
466  "nu(mu)~",
467  "mu+",
468  "nu(e)~",
469  "e+",
470  "t~",
471  "b~",
472  "c~",
473  "s~",
474  "u~",
475  "d~",
476  "d",
477  "u",
478  "s",
479  "c",
480  "b",
481  "t",
482  "e-",
483  "nu(e)",
484  "mu-",
485  "nu(mu)",
486  "tau-",
487  "nu(tau)",
488  "g",
489  "gamma",
490  "Z0",
491  "W+",
492  "H0",
493  "pi0",
494  "rho(770)0",
495  "a(2)(1320)0",
496  "rho(3)(1690)0",
497  "a(4)(1970)0",
498  "K(L)0",
499  "pi+",
500  "rho(770)+",
501  "a(2)(1320)+",
502  "rho(3)(1690)+",
503  "a(4)(1970)+",
504  "eta",
505  "omega(782)",
506  "f(2)(1270)",
507  "omega(3)(1670)",
508  "f(4)(2050)",
509  "K(S)0",
510  "K0",
511  "K*(892)0",
512  "K(2)*(1430)0",
513  "K(3)*(1780)0",
514  "K(4)*(2045)0",
515  "K+",
516  "K*(892)+",
517  "K(2)*(1430)+",
518  "K(3)*(1780)+",
519  "K(4)*(2045)+",
520  "eta'(958)",
521  "phi(1020)",
522  "f(2)'(1525)",
523  "phi(3)(1850)",
524  "D+",
525  "D*(2010)+",
526  "D(2)*(2460)+",
527  "D0",
528  "D*(2007)0",
529  "D(2)*(2460)0",
530  "D(s)+",
531  "D(s)*+",
532  "D(s2)*(2573)+",
533  "eta(c)(1S)",
534  "J/psi(1S)",
535  "chi(c2)(1P)",
536  "B0",
537  "B*0",
538  "B(2)*(5747)0",
539  "B+",
540  "B*+",
541  "B(2)*(5747)+",
542  "B(s)0",
543  "B(s)*0",
544  "B(s2)*(5840)0",
545  "B(c)+",
546  "Upsilon(1S)",
547  "chi(b2)(1P)",
548  "Delta(1620)-",
549  "Delta(1232)-",
550  "Delta(1905)-",
551  "Delta(1950)-",
552  "Delta(1620)0",
553  "N(1520)0",
554  "Delta(1905)0",
555  "N(2190)0",
556  "n",
557  "Delta(1232)0",
558  "N(1675)0",
559  "Delta(1950)0",
560  "Delta(1620)+",
561  "N(1520)+",
562  "Delta(1905)+",
563  "N(2190)+",
564  "p",
565  "Delta(1232)+",
566  "N(1675)+",
567  "Delta(1950)+",
568  "Delta(1620)++",
569  "Delta(1232)++",
570  "Delta(1905)++",
571  "Delta(1950)++",
572  "Sigma-",
573  "Sigma(1385)-",
574  "Sigma(1775)-",
575  "Sigma(2030)-",
576  "Lambda",
577  "Lambda(1520)",
578  "Lambda(1820)",
579  "Lambda(2100)",
580  "Sigma0",
581  "Sigma(1385)0",
582  "Sigma(1775)0",
583  "Sigma(2030)0",
584  "Sigma+",
585  "Sigma(1385)+",
586  "Sigma(1775)+",
587  "Sigma(2030)+",
588  "Xi-",
589  "Xi(1530)-",
590  "Xi0",
591  "Xi(1530)0",
592  "Omega-",
593  "Sigma(c)(2455)0",
594  "Sigma(c)(2520)0",
595  "Lambda(c)+",
596  "Xi(c)0",
597  "Sigma(c)(2455)+",
598  "Sigma(c)(2520)+",
599  "Sigma(c)(2455)++",
600  "Sigma(c)(2520)++",
601  "Xi(c)+",
602  "Xi(c)'0",
603  "Xi(c)(2645)0",
604  "Xi(c)'+",
605  "Xi(c)(2645)+",
606  "Omega(c)0",
607  "Omega(c)(2770)0",
608  "Sigma(b)-",
609  "Sigma(b)*-",
610  "Lambda(b)0",
611  "Xi(b)-",
612  "Sigma(b)+",
613  "Sigma(b)*+",
614  "Xi(b)0",
615  "Omega(b)-",
616  "a(0)(1450)0",
617  "b(1)(1235)0",
618  "pi(2)(1670)0",
619  "a(0)(1450)+",
620  "b(1)(1235)+",
621  "pi(2)(1670)+",
622  "f(0)(1370)",
623  "h(1)(1170)",
624  "eta(2)(1645)",
625  "K(0)*(1430)0",
626  "K(1)(1270)0",
627  "K(2)(1770)0",
628  "K(0)*(1430)+",
629  "K(1)(1270)+",
630  "K(2)(1770)+",
631  "f(0)(1710)",
632  "h(1)(1415)",
633  "D(0)*(2300)+",
634  "D(0)*(2300)0",
635  "D(1)(2420)0",
636  "D(s0)*(2317)+",
637  "D(s1)(2536)+",
638  "chi(c0)(1P)",
639  "h(c)(1P)",
640  "chi(b0)(1P)",
641  "h(b)(1P)",
642  "Delta(1900)-",
643  "Delta(1700)-",
644  "Delta(1930)-",
645  "Delta(1900)0",
646  "Delta(1930)0",
647  "N(1440)0",
648  "Delta(1700)0",
649  "N(1680)0",
650  "Delta(1900)+",
651  "Delta(1930)+",
652  "N(1440)+",
653  "Delta(1700)+",
654  "N(1680)+",
655  "Delta(1900)++",
656  "Delta(1700)++",
657  "Delta(1930)++",
658  "Sigma(1660)-",
659  "Sigma(1670)-",
660  "Sigma(1915)-",
661  "Lambda(1405)",
662  "Lambda(1690)",
663  "Lambda(1830)",
664  "Sigma(1660)0",
665  "Sigma(1670)0",
666  "Sigma(1915)0",
667  "Sigma(1660)+",
668  "Sigma(1670)+",
669  "Sigma(1915)+",
670  "Xi(1820)-",
671  "Xi(1820)0",
672  "Lambda(c)(2595)+",
673  "a(1)(1260)0",
674  "a(1)(1260)+",
675  "f(1)(1285)",
676  "K(1)(1400)0",
677  "K(2)(1820)0",
678  "K(1)(1400)+",
679  "K(2)(1820)+",
680  "f(1)(1420)",
681  "D(s1)(2460)+",
682  "chi(c1)(1P)",
683  "chi(b1)(1P)",
684  "Upsilon(2)(1D)",
685  "Delta(1910)-",
686  "Delta(1920)-",
687  "Delta(1910)0",
688  "N(1700)0",
689  "N(1535)0",
690  "Delta(1920)0",
691  "Delta(1910)+",
692  "N(1700)+",
693  "N(1535)+",
694  "Delta(1920)+",
695  "Delta(1910)++",
696  "Delta(1920)++",
697  "Sigma(1750)-",
698  "Sigma(1940)-",
699  "Lambda(1600)",
700  "Lambda(1890)",
701  "Lambda(2110)",
702  "Sigma(1750)0",
703  "Sigma(1940)0",
704  "Sigma(1750)+",
705  "Sigma(1940)+",
706  "rho(1700)0",
707  "rho(1700)+",
708  "omega(1650)",
709  "K*(1680)0",
710  "K*(1680)+",
711  "psi(3770)",
712  "Delta(1600)-",
713  "N(1720)0",
714  "N(1650)0",
715  "Delta(1600)0",
716  "N(1720)+",
717  "N(1650)+",
718  "Delta(1600)+",
719  "Delta(1600)++",
720  "Lambda(1670)",
721  "N(1710)0",
722  "N(1710)+",
723  "Lambda(1800)",
724  "Lambda(1810)",
725  "pi(1300)0",
726  "rho(1450)0",
727  "pi(1300)+",
728  "rho(1450)+",
729  "eta(1295)",
730  "K*(1410)0",
731  "K*(1410)+",
732  "eta(1475)",
733  "phi(1680)",
734  "eta(c)(2S)",
735  "psi(2S)",
736  "chi(c2)(3930)",
737  "Upsilon(2S)",
738  "chi(b2)(2P)",
739  "Xi(1950)-",
740  "Xi(1950)0",
741  "Lambda(c)(2625)+",
742  "Xi(c)(2815)0",
743  "Xi(c)(2790)0",
744  "Xi(c)(2815)+",
745  "Xi(c)(2790)+",
746  "chi(b0)(2P)",
747  "chi(b1)(2P)",
748  "Upsilon(3S)",
749  "Xi(1690)-",
750  "Xi(2030)-",
751  "Xi(1690)0",
752  "Xi(2030)0",
753  "Omega(2250)-",
754  "Lambda(c)(2880)+",
755  "Upsilon(4S)",
756  "omega(1420)",
757  "a(0)(980)0",
758  "pi(1)(1400)0",
759  "a(2)(1700)0",
760  "a(0)(980)+",
761  "pi(1)(1400)+",
762  "a(2)(1700)+",
763  "f(0)(500)",
764  "K(0)*(700)0",
765  "K(0)*(700)+",
766  "psi(4040)",
767  "Upsilon(10860)",
768  "pi(1800)0",
769  "pi(1)(1600)0",
770  "pi(1800)+",
771  "pi(1)(1600)+",
772  "f(0)(980)",
773  "psi(4160)",
774  "Upsilon(11020)",
775  "a(1)(1640)0",
776  "a(1)(1640)+",
777  "eta(1405)",
778  "psi(4415)",
779  "f(0)(1500)",
780  "f(2)(1950)",
781  "f(2)(2010)",
782  "f(2)(2300)",
783  "f(2)(2340)",
784 };