Analysis Software
Documentation for sPHENIX simulation software
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
gtest-printers.h
Go to the documentation of this file. Or view the newest version in sPHENIX GitHub for file gtest-printers.h
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Author: wan@google.com (Zhanyong Wan)
31 
32 // Google Test - The Google C++ Testing Framework
33 //
34 // This file implements a universal value printer that can print a
35 // value of any type T:
36 //
37 // void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr);
38 //
39 // A user can teach this function how to print a class type T by
40 // defining either operator<<() or PrintTo() in the namespace that
41 // defines T. More specifically, the FIRST defined function in the
42 // following list will be used (assuming T is defined in namespace
43 // foo):
44 //
45 // 1. foo::PrintTo(const T&, ostream*)
46 // 2. operator<<(ostream&, const T&) defined in either foo or the
47 // global namespace.
48 //
49 // If none of the above is defined, it will print the debug string of
50 // the value if it is a protocol buffer, or print the raw bytes in the
51 // value otherwise.
52 //
53 // To aid debugging: when T is a reference type, the address of the
54 // value is also printed; when T is a (const) char pointer, both the
55 // pointer value and the NUL-terminated string it points to are
56 // printed.
57 //
58 // We also provide some convenient wrappers:
59 //
60 // // Prints a value to a string. For a (const or not) char
61 // // pointer, the NUL-terminated string (but not the pointer) is
62 // // printed.
63 // std::string ::testing::PrintToString(const T& value);
64 //
65 // // Prints a value tersely: for a reference type, the referenced
66 // // value (but not the address) is printed; for a (const or not) char
67 // // pointer, the NUL-terminated string (but not the pointer) is
68 // // printed.
69 // void ::testing::internal::UniversalTersePrint(const T& value, ostream*);
70 //
71 // // Prints value using the type inferred by the compiler. The difference
72 // // from UniversalTersePrint() is that this function prints both the
73 // // pointer and the NUL-terminated string for a (const or not) char pointer.
74 // void ::testing::internal::UniversalPrint(const T& value, ostream*);
75 //
76 // // Prints the fields of a tuple tersely to a string vector, one
77 // // element for each field. Tuple support must be enabled in
78 // // gtest-port.h.
79 // std::vector<string> UniversalTersePrintTupleFieldsToStrings(
80 // const Tuple& value);
81 //
82 // Known limitation:
83 //
84 // The print primitives print the elements of an STL-style container
85 // using the compiler-inferred type of *iter where iter is a
86 // const_iterator of the container. When const_iterator is an input
87 // iterator but not a forward iterator, this inferred type may not
88 // match value_type, and the print output may be incorrect. In
89 // practice, this is rarely a problem as for most containers
90 // const_iterator is a forward iterator. We'll fix this if there's an
91 // actual need for it. Note that this fix cannot rely on value_type
92 // being defined as many user-defined container types don't have
93 // value_type.
94 
95 #ifndef GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
96 #define GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
97 
98 #include <ostream> // NOLINT
99 #include <sstream>
100 #include <string>
101 #include <utility>
102 #include <vector>
105 
106 #if GTEST_HAS_STD_TUPLE_
107 # include <tuple>
108 #endif
109 
110 namespace testing {
111 
112 // Definitions in the 'internal' and 'internal2' name spaces are
113 // subject to change without notice. DO NOT USE THEM IN USER CODE!
114 namespace internal2 {
115 
116 // Prints the given number of bytes in the given object to the given
117 // ostream.
118 GTEST_API_ void PrintBytesInObjectTo(const unsigned char* obj_bytes,
119  size_t count,
120  ::std::ostream* os);
121 
122 // For selecting which printer to use when a given type has neither <<
123 // nor PrintTo().
124 enum TypeKind {
125  kProtobuf, // a protobuf type
126  kConvertibleToInteger, // a type implicitly convertible to BiggestInt
127  // (e.g. a named or unnamed enum type)
128  kOtherType // anything else
129 };
130 
131 // TypeWithoutFormatter<T, kTypeKind>::PrintValue(value, os) is called
132 // by the universal printer to print a value of type T when neither
133 // operator<< nor PrintTo() is defined for T, where kTypeKind is the
134 // "kind" of T as defined by enum TypeKind.
135 template <typename T, TypeKind kTypeKind>
137  public:
138  // This default version is called when kTypeKind is kOtherType.
139  static void PrintValue(const T& value, ::std::ostream* os) {
140  PrintBytesInObjectTo(reinterpret_cast<const unsigned char*>(&value),
141  sizeof(value), os);
142  }
143 };
144 
145 // We print a protobuf using its ShortDebugString() when the string
146 // doesn't exceed this many characters; otherwise we print it using
147 // DebugString() for better readability.
148 const size_t kProtobufOneLinerMaxLength = 50;
149 
150 template <typename T>
152  public:
153  static void PrintValue(const T& value, ::std::ostream* os) {
154  const ::testing::internal::string short_str = value.ShortDebugString();
156  short_str.length() <= kProtobufOneLinerMaxLength ?
157  short_str : ("\n" + value.DebugString());
158  *os << ("<" + pretty_str + ">");
159  }
160 };
161 
162 template <typename T>
164  public:
165  // Since T has no << operator or PrintTo() but can be implicitly
166  // converted to BiggestInt, we print it as a BiggestInt.
167  //
168  // Most likely T is an enum type (either named or unnamed), in which
169  // case printing it as an integer is the desired behavior. In case
170  // T is not an enum, printing it as an integer is the best we can do
171  // given that it has no user-defined printer.
172  static void PrintValue(const T& value, ::std::ostream* os) {
173  const internal::BiggestInt kBigInt = value;
174  *os << kBigInt;
175  }
176 };
177 
178 // Prints the given value to the given ostream. If the value is a
179 // protocol message, its debug string is printed; if it's an enum or
180 // of a type implicitly convertible to BiggestInt, it's printed as an
181 // integer; otherwise the bytes in the value are printed. This is
182 // what UniversalPrinter<T>::Print() does when it knows nothing about
183 // type T and T has neither << operator nor PrintTo().
184 //
185 // A user can override this behavior for a class type Foo by defining
186 // a << operator in the namespace where Foo is defined.
187 //
188 // We put this operator in namespace 'internal2' instead of 'internal'
189 // to simplify the implementation, as much code in 'internal' needs to
190 // use << in STL, which would conflict with our own << were it defined
191 // in 'internal'.
192 //
193 // Note that this operator<< takes a generic std::basic_ostream<Char,
194 // CharTraits> type instead of the more restricted std::ostream. If
195 // we define it to take an std::ostream instead, we'll get an
196 // "ambiguous overloads" compiler error when trying to print a type
197 // Foo that supports streaming to std::basic_ostream<Char,
198 // CharTraits>, as the compiler cannot tell whether
199 // operator<<(std::ostream&, const T&) or
200 // operator<<(std::basic_stream<Char, CharTraits>, const Foo&) is more
201 // specific.
202 template <typename Char, typename CharTraits, typename T>
203 ::std::basic_ostream<Char, CharTraits>& operator<<(
204  ::std::basic_ostream<Char, CharTraits>& os, const T& x) {
208  kConvertibleToInteger : kOtherType)>::PrintValue(x, &os);
209  return os;
210 }
211 
212 } // namespace internal2
213 } // namespace testing
214 
215 // This namespace MUST NOT BE NESTED IN ::testing, or the name look-up
216 // magic needed for implementing UniversalPrinter won't work.
217 namespace testing_internal {
218 
219 // Used to print a value that is not an STL-style container when the
220 // user doesn't define PrintTo() for it.
221 template <typename T>
222 void DefaultPrintNonContainerTo(const T& value, ::std::ostream* os) {
223  // With the following statement, during unqualified name lookup,
224  // testing::internal2::operator<< appears as if it was declared in
225  // the nearest enclosing namespace that contains both
226  // ::testing_internal and ::testing::internal2, i.e. the global
227  // namespace. For more details, refer to the C++ Standard section
228  // 7.3.4-1 [namespace.udir]. This allows us to fall back onto
229  // testing::internal2::operator<< in case T doesn't come with a <<
230  // operator.
231  //
232  // We cannot write 'using ::testing::internal2::operator<<;', which
233  // gcc 3.3 fails to compile due to a compiler bug.
234  using namespace ::testing::internal2; // NOLINT
235 
236  // Assuming T is defined in namespace foo, in the next statement,
237  // the compiler will consider all of:
238  //
239  // 1. foo::operator<< (thanks to Koenig look-up),
240  // 2. ::operator<< (as the current namespace is enclosed in ::),
241  // 3. testing::internal2::operator<< (thanks to the using statement above).
242  //
243  // The operator<< whose type matches T best will be picked.
244  //
245  // We deliberately allow #2 to be a candidate, as sometimes it's
246  // impossible to define #1 (e.g. when foo is ::std, defining
247  // anything in it is undefined behavior unless you are a compiler
248  // vendor.).
249  *os << value;
250 }
251 
252 } // namespace testing_internal
253 
254 namespace testing {
255 namespace internal {
256 
257 // FormatForComparison<ToPrint, OtherOperand>::Format(value) formats a
258 // value of type ToPrint that is an operand of a comparison assertion
259 // (e.g. ASSERT_EQ). OtherOperand is the type of the other operand in
260 // the comparison, and is used to help determine the best way to
261 // format the value. In particular, when the value is a C string
262 // (char pointer) and the other operand is an STL string object, we
263 // want to format the C string as a string, since we know it is
264 // compared by value with the string object. If the value is a char
265 // pointer but the other operand is not an STL string object, we don't
266 // know whether the pointer is supposed to point to a NUL-terminated
267 // string, and thus want to print it as a pointer to be safe.
268 //
269 // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM.
270 
271 // The default case.
272 template <typename ToPrint, typename OtherOperand>
274  public:
277  }
278 };
279 
280 // Array.
281 template <typename ToPrint, size_t N, typename OtherOperand>
282 class FormatForComparison<ToPrint[N], OtherOperand> {
283  public:
286  }
287 };
288 
289 // By default, print C string as pointers to be safe, as we don't know
290 // whether they actually point to a NUL-terminated string.
291 
292 #define GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(CharType) \
293  template <typename OtherOperand> \
294  class FormatForComparison<CharType*, OtherOperand> { \
295  public: \
296  static ::std::string Format(CharType* value) { \
297  return ::testing::PrintToString(static_cast<const void*>(value)); \
298  } \
299  }
300 
305 
306 #undef GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_
307 
308 // If a C string is compared with an STL string object, we know it's meant
309 // to point to a NUL-terminated string, and thus can print it as a string.
310 
311 #define GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(CharType, OtherStringType) \
312  template <> \
313  class FormatForComparison<CharType*, OtherStringType> { \
314  public: \
315  static ::std::string Format(CharType* value) { \
316  return ::testing::PrintToString(value); \
317  } \
318  }
319 
322 
323 #if GTEST_HAS_GLOBAL_STRING
325 GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char, ::string);
326 #endif
327 
328 #if GTEST_HAS_GLOBAL_WSTRING
331 #endif
332 
333 #if GTEST_HAS_STD_WSTRING
336 #endif
337 
338 #undef GTEST_IMPL_FORMAT_C_STRING_AS_STRING_
339 
340 // Formats a comparison assertion (e.g. ASSERT_EQ, EXPECT_LT, and etc)
341 // operand to be used in a failure message. The type (but not value)
342 // of the other operand may affect the format. This allows us to
343 // print a char* as a raw pointer when it is compared against another
344 // char* or void*, and print it as a C string when it is compared
345 // against an std::string object, for example.
346 //
347 // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM.
348 template <typename T1, typename T2>
350  const T1& value, const T2& /* other_operand */) {
352 }
353 
354 // UniversalPrinter<T>::Print(value, ostream_ptr) prints the given
355 // value to the given ostream. The caller must ensure that
356 // 'ostream_ptr' is not NULL, or the behavior is undefined.
357 //
358 // We define UniversalPrinter as a class template (as opposed to a
359 // function template), as we need to partially specialize it for
360 // reference types, which cannot be done with function templates.
361 template <typename T>
363 
364 template <typename T>
365 void UniversalPrint(const T& value, ::std::ostream* os);
366 
367 // Used to print an STL-style container when the user doesn't define
368 // a PrintTo() for it.
369 template <typename C>
370 void DefaultPrintTo(IsContainer /* dummy */,
371  false_type /* is not a pointer */,
372  const C& container, ::std::ostream* os) {
373  const size_t kMaxCount = 32; // The maximum number of elements to print.
374  *os << '{';
375  size_t count = 0;
376  for (typename C::const_iterator it = container.begin();
377  it != container.end(); ++it, ++count) {
378  if (count > 0) {
379  *os << ',';
380  if (count == kMaxCount) { // Enough has been printed.
381  *os << " ...";
382  break;
383  }
384  }
385  *os << ' ';
386  // We cannot call PrintTo(*it, os) here as PrintTo() doesn't
387  // handle *it being a native array.
389  }
390 
391  if (count > 0) {
392  *os << ' ';
393  }
394  *os << '}';
395 }
396 
397 // Used to print a pointer that is neither a char pointer nor a member
398 // pointer, when the user doesn't define PrintTo() for it. (A member
399 // variable pointer or member function pointer doesn't really point to
400 // a location in the address space. Their representation is
401 // implementation-defined. Therefore they will be printed as raw
402 // bytes.)
403 template <typename T>
405  true_type /* is a pointer */,
406  T* p, ::std::ostream* os) {
407  if (p == NULL) {
408  *os << "NULL";
409  } else {
410  // C++ doesn't allow casting from a function pointer to any object
411  // pointer.
412  //
413  // IsTrue() silences warnings: "Condition is always true",
414  // "unreachable code".
416  // T is not a function type. We just call << to print p,
417  // relying on ADL to pick up user-defined << for their pointer
418  // types, if any.
419  *os << p;
420  } else {
421  // T is a function type, so '*os << p' doesn't do what we want
422  // (it just prints p as bool). We want to print p as a const
423  // void*. However, we cannot cast it to const void* directly,
424  // even using reinterpret_cast, as earlier versions of gcc
425  // (e.g. 3.4.5) cannot compile the cast when p is a function
426  // pointer. Casting to UInt64 first solves the problem.
427  *os << reinterpret_cast<const void*>(
428  reinterpret_cast<internal::UInt64>(p));
429  }
430  }
431 }
432 
433 // Used to print a non-container, non-pointer value when the user
434 // doesn't define PrintTo() for it.
435 template <typename T>
437  false_type /* is not a pointer */,
438  const T& value, ::std::ostream* os) {
440 }
441 
442 // Prints the given value using the << operator if it has one;
443 // otherwise prints the bytes in it. This is what
444 // UniversalPrinter<T>::Print() does when PrintTo() is not specialized
445 // or overloaded for type T.
446 //
447 // A user can override this behavior for a class type Foo by defining
448 // an overload of PrintTo() in the namespace where Foo is defined. We
449 // give the user this option as sometimes defining a << operator for
450 // Foo is not desirable (e.g. the coding style may prevent doing it,
451 // or there is already a << operator but it doesn't do what the user
452 // wants).
453 template <typename T>
454 void PrintTo(const T& value, ::std::ostream* os) {
455  // DefaultPrintTo() is overloaded. The type of its first two
456  // arguments determine which version will be picked. If T is an
457  // STL-style container, the version for container will be called; if
458  // T is a pointer, the pointer version will be called; otherwise the
459  // generic version will be called.
460  //
461  // Note that we check for container types here, prior to we check
462  // for protocol message types in our operator<<. The rationale is:
463  //
464  // For protocol messages, we want to give people a chance to
465  // override Google Mock's format by defining a PrintTo() or
466  // operator<<. For STL containers, other formats can be
467  // incompatible with Google Mock's format for the container
468  // elements; therefore we check for container types here to ensure
469  // that our format is used.
470  //
471  // The second argument of DefaultPrintTo() is needed to bypass a bug
472  // in Symbian's C++ compiler that prevents it from picking the right
473  // overload between:
474  //
475  // PrintTo(const T& x, ...);
476  // PrintTo(T* x, ...);
477  DefaultPrintTo(IsContainerTest<T>(0), is_pointer<T>(), value, os);
478 }
479 
480 // The following list of PrintTo() overloads tells
481 // UniversalPrinter<T>::Print() how to print standard types (built-in
482 // types, strings, plain arrays, and pointers).
483 
484 // Overloads for various char types.
485 GTEST_API_ void PrintTo(unsigned char c, ::std::ostream* os);
486 GTEST_API_ void PrintTo(signed char c, ::std::ostream* os);
487 inline void PrintTo(char c, ::std::ostream* os) {
488  // When printing a plain char, we always treat it as unsigned. This
489  // way, the output won't be affected by whether the compiler thinks
490  // char is signed or not.
491  PrintTo(static_cast<unsigned char>(c), os);
492 }
493 
494 // Overloads for other simple built-in types.
495 inline void PrintTo(bool x, ::std::ostream* os) {
496  *os << (x ? "true" : "false");
497 }
498 
499 // Overload for wchar_t type.
500 // Prints a wchar_t as a symbol if it is printable or as its internal
501 // code otherwise and also as its decimal code (except for L'\0').
502 // The L'\0' char is printed as "L'\\0'". The decimal code is printed
503 // as signed integer when wchar_t is implemented by the compiler
504 // as a signed type and is printed as an unsigned integer when wchar_t
505 // is implemented as an unsigned type.
506 GTEST_API_ void PrintTo(wchar_t wc, ::std::ostream* os);
507 
508 // Overloads for C strings.
509 GTEST_API_ void PrintTo(const char* s, ::std::ostream* os);
510 inline void PrintTo(char* s, ::std::ostream* os) {
511  PrintTo(ImplicitCast_<const char*>(s), os);
512 }
513 
514 // signed/unsigned char is often used for representing binary data, so
515 // we print pointers to it as void* to be safe.
516 inline void PrintTo(const signed char* s, ::std::ostream* os) {
517  PrintTo(ImplicitCast_<const void*>(s), os);
518 }
519 inline void PrintTo(signed char* s, ::std::ostream* os) {
520  PrintTo(ImplicitCast_<const void*>(s), os);
521 }
522 inline void PrintTo(const unsigned char* s, ::std::ostream* os) {
523  PrintTo(ImplicitCast_<const void*>(s), os);
524 }
525 inline void PrintTo(unsigned char* s, ::std::ostream* os) {
526  PrintTo(ImplicitCast_<const void*>(s), os);
527 }
528 
529 // MSVC can be configured to define wchar_t as a typedef of unsigned
530 // short. It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native
531 // type. When wchar_t is a typedef, defining an overload for const
532 // wchar_t* would cause unsigned short* be printed as a wide string,
533 // possibly causing invalid memory accesses.
534 #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
535 // Overloads for wide C strings
536 GTEST_API_ void PrintTo(const wchar_t* s, ::std::ostream* os);
537 inline void PrintTo(wchar_t* s, ::std::ostream* os) {
538  PrintTo(ImplicitCast_<const wchar_t*>(s), os);
539 }
540 #endif
541 
542 // Overload for C arrays. Multi-dimensional arrays are printed
543 // properly.
544 
545 // Prints the given number of elements in an array, without printing
546 // the curly braces.
547 template <typename T>
548 void PrintRawArrayTo(const T a[], size_t count, ::std::ostream* os) {
549  UniversalPrint(a[0], os);
550  for (size_t i = 1; i != count; i++) {
551  *os << ", ";
552  UniversalPrint(a[i], os);
553  }
554 }
555 
556 // Overloads for ::string and ::std::string.
557 #if GTEST_HAS_GLOBAL_STRING
558 GTEST_API_ void PrintStringTo(const ::string&s, ::std::ostream* os);
559 inline void PrintTo(const ::string& s, ::std::ostream* os) {
560  PrintStringTo(s, os);
561 }
562 #endif // GTEST_HAS_GLOBAL_STRING
563 
564 GTEST_API_ void PrintStringTo(const ::std::string&s, ::std::ostream* os);
565 inline void PrintTo(const ::std::string& s, ::std::ostream* os) {
566  PrintStringTo(s, os);
567 }
568 
569 // Overloads for ::wstring and ::std::wstring.
570 #if GTEST_HAS_GLOBAL_WSTRING
571 GTEST_API_ void PrintWideStringTo(const ::wstring&s, ::std::ostream* os);
572 inline void PrintTo(const ::wstring& s, ::std::ostream* os) {
573  PrintWideStringTo(s, os);
574 }
575 #endif // GTEST_HAS_GLOBAL_WSTRING
576 
577 #if GTEST_HAS_STD_WSTRING
578 GTEST_API_ void PrintWideStringTo(const ::std::wstring&s, ::std::ostream* os);
579 inline void PrintTo(const ::std::wstring& s, ::std::ostream* os) {
580  PrintWideStringTo(s, os);
581 }
582 #endif // GTEST_HAS_STD_WSTRING
583 
584 #if GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_
585 // Helper function for printing a tuple. T must be instantiated with
586 // a tuple type.
587 template <typename T>
588 void PrintTupleTo(const T& t, ::std::ostream* os);
589 #endif // GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_
590 
591 #if GTEST_HAS_TR1_TUPLE
592 // Overload for ::std::tr1::tuple. Needed for printing function arguments,
593 // which are packed as tuples.
594 
595 // Overloaded PrintTo() for tuples of various arities. We support
596 // tuples of up-to 10 fields. The following implementation works
597 // regardless of whether tr1::tuple is implemented using the
598 // non-standard variadic template feature or not.
599 
600 inline void PrintTo(const ::std::tr1::tuple<>& t, ::std::ostream* os) {
601  PrintTupleTo(t, os);
602 }
603 
604 template <typename T1>
605 void PrintTo(const ::std::tr1::tuple<T1>& t, ::std::ostream* os) {
606  PrintTupleTo(t, os);
607 }
608 
609 template <typename T1, typename T2>
610 void PrintTo(const ::std::tr1::tuple<T1, T2>& t, ::std::ostream* os) {
611  PrintTupleTo(t, os);
612 }
613 
614 template <typename T1, typename T2, typename T3>
615 void PrintTo(const ::std::tr1::tuple<T1, T2, T3>& t, ::std::ostream* os) {
616  PrintTupleTo(t, os);
617 }
618 
619 template <typename T1, typename T2, typename T3, typename T4>
620 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4>& t, ::std::ostream* os) {
621  PrintTupleTo(t, os);
622 }
623 
624 template <typename T1, typename T2, typename T3, typename T4, typename T5>
625 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5>& t,
626  ::std::ostream* os) {
627  PrintTupleTo(t, os);
628 }
629 
630 template <typename T1, typename T2, typename T3, typename T4, typename T5,
631  typename T6>
632 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6>& t,
633  ::std::ostream* os) {
634  PrintTupleTo(t, os);
635 }
636 
637 template <typename T1, typename T2, typename T3, typename T4, typename T5,
638  typename T6, typename T7>
639 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7>& t,
640  ::std::ostream* os) {
641  PrintTupleTo(t, os);
642 }
643 
644 template <typename T1, typename T2, typename T3, typename T4, typename T5,
645  typename T6, typename T7, typename T8>
646 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8>& t,
647  ::std::ostream* os) {
648  PrintTupleTo(t, os);
649 }
650 
651 template <typename T1, typename T2, typename T3, typename T4, typename T5,
652  typename T6, typename T7, typename T8, typename T9>
653 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9>& t,
654  ::std::ostream* os) {
655  PrintTupleTo(t, os);
656 }
657 
658 template <typename T1, typename T2, typename T3, typename T4, typename T5,
659  typename T6, typename T7, typename T8, typename T9, typename T10>
660 void PrintTo(
661  const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>& t,
662  ::std::ostream* os) {
663  PrintTupleTo(t, os);
664 }
665 #endif // GTEST_HAS_TR1_TUPLE
666 
667 #if GTEST_HAS_STD_TUPLE_
668 template <typename... Types>
669 void PrintTo(const ::std::tuple<Types...>& t, ::std::ostream* os) {
670  PrintTupleTo(t, os);
671 }
672 #endif // GTEST_HAS_STD_TUPLE_
673 
674 // Overload for std::pair.
675 template <typename T1, typename T2>
676 void PrintTo(const ::std::pair<T1, T2>& value, ::std::ostream* os) {
677  *os << '(';
678  // We cannot use UniversalPrint(value.first, os) here, as T1 may be
679  // a reference type. The same for printing value.second.
680  UniversalPrinter<T1>::Print(value.first, os);
681  *os << ", ";
682  UniversalPrinter<T2>::Print(value.second, os);
683  *os << ')';
684 }
685 
686 // Implements printing a non-reference type T by letting the compiler
687 // pick the right overload of PrintTo() for T.
688 template <typename T>
690  public:
691  // MSVC warns about adding const to a function type, so we want to
692  // disable the warning.
694 
695  // Note: we deliberately don't call this PrintTo(), as that name
696  // conflicts with ::testing::internal::PrintTo in the body of the
697  // function.
698  static void Print(const T& value, ::std::ostream* os) {
699  // By default, ::testing::internal::PrintTo() is used for printing
700  // the value.
701  //
702  // Thanks to Koenig look-up, if T is a class and has its own
703  // PrintTo() function defined in its namespace, that function will
704  // be visible here. Since it is more specific than the generic ones
705  // in ::testing::internal, it will be picked by the compiler in the
706  // following statement - exactly what we want.
707  PrintTo(value, os);
708  }
709 
711 };
712 
713 // UniversalPrintArray(begin, len, os) prints an array of 'len'
714 // elements, starting at address 'begin'.
715 template <typename T>
716 void UniversalPrintArray(const T* begin, size_t len, ::std::ostream* os) {
717  if (len == 0) {
718  *os << "{}";
719  } else {
720  *os << "{ ";
721  const size_t kThreshold = 18;
722  const size_t kChunkSize = 8;
723  // If the array has more than kThreshold elements, we'll have to
724  // omit some details by printing only the first and the last
725  // kChunkSize elements.
726  // TODO(wan@google.com): let the user control the threshold using a flag.
727  if (len <= kThreshold) {
728  PrintRawArrayTo(begin, len, os);
729  } else {
730  PrintRawArrayTo(begin, kChunkSize, os);
731  *os << ", ..., ";
732  PrintRawArrayTo(begin + len - kChunkSize, kChunkSize, os);
733  }
734  *os << " }";
735  }
736 }
737 // This overload prints a (const) char array compactly.
739  const char* begin, size_t len, ::std::ostream* os);
740 
741 // This overload prints a (const) wchar_t array compactly.
743  const wchar_t* begin, size_t len, ::std::ostream* os);
744 
745 // Implements printing an array type T[N].
746 template <typename T, size_t N>
748  public:
749  // Prints the given array, omitting some elements when there are too
750  // many.
751  static void Print(const T (&a)[N], ::std::ostream* os) {
752  UniversalPrintArray(a, N, os);
753  }
754 };
755 
756 // Implements printing a reference type T&.
757 template <typename T>
759  public:
760  // MSVC warns about adding const to a function type, so we want to
761  // disable the warning.
763 
764  static void Print(const T& value, ::std::ostream* os) {
765  // Prints the address of the value. We use reinterpret_cast here
766  // as static_cast doesn't compile when T is a function type.
767  *os << "@" << reinterpret_cast<const void*>(&value) << " ";
768 
769  // Then prints the value itself.
770  UniversalPrint(value, os);
771  }
772 
774 };
775 
776 // Prints a value tersely: for a reference type, the referenced value
777 // (but not the address) is printed; for a (const) char pointer, the
778 // NUL-terminated string (but not the pointer) is printed.
779 
780 template <typename T>
782  public:
783  static void Print(const T& value, ::std::ostream* os) {
784  UniversalPrint(value, os);
785  }
786 };
787 template <typename T>
789  public:
790  static void Print(const T& value, ::std::ostream* os) {
791  UniversalPrint(value, os);
792  }
793 };
794 template <typename T, size_t N>
796  public:
797  static void Print(const T (&value)[N], ::std::ostream* os) {
799  }
800 };
801 template <>
802 class UniversalTersePrinter<const char*> {
803  public:
804  static void Print(const char* str, ::std::ostream* os) {
805  if (str == NULL) {
806  *os << "NULL";
807  } else {
808  UniversalPrint(string(str), os);
809  }
810  }
811 };
812 template <>
813 class UniversalTersePrinter<char*> {
814  public:
815  static void Print(char* str, ::std::ostream* os) {
817  }
818 };
819 
820 #if GTEST_HAS_STD_WSTRING
821 template <>
822 class UniversalTersePrinter<const wchar_t*> {
823  public:
824  static void Print(const wchar_t* str, ::std::ostream* os) {
825  if (str == NULL) {
826  *os << "NULL";
827  } else {
828  UniversalPrint(::std::wstring(str), os);
829  }
830  }
831 };
832 #endif
833 
834 template <>
835 class UniversalTersePrinter<wchar_t*> {
836  public:
837  static void Print(wchar_t* str, ::std::ostream* os) {
839  }
840 };
841 
842 template <typename T>
843 void UniversalTersePrint(const T& value, ::std::ostream* os) {
845 }
846 
847 // Prints a value using the type inferred by the compiler. The
848 // difference between this and UniversalTersePrint() is that for a
849 // (const) char pointer, this prints both the pointer and the
850 // NUL-terminated string.
851 template <typename T>
852 void UniversalPrint(const T& value, ::std::ostream* os) {
853  // A workarond for the bug in VC++ 7.1 that prevents us from instantiating
854  // UniversalPrinter with T directly.
855  typedef T T1;
856  UniversalPrinter<T1>::Print(value, os);
857 }
858 
859 typedef ::std::vector<string> Strings;
860 
861 // TuplePolicy<TupleT> must provide:
862 // - tuple_size
863 // size of tuple TupleT.
864 // - get<size_t I>(const TupleT& t)
865 // static function extracting element I of tuple TupleT.
866 // - tuple_element<size_t I>::type
867 // type of element I of tuple TupleT.
868 template <typename TupleT>
869 struct TuplePolicy;
870 
871 #if GTEST_HAS_TR1_TUPLE
872 template <typename TupleT>
873 struct TuplePolicy {
874  typedef TupleT Tuple;
875  static const size_t tuple_size = ::std::tr1::tuple_size<Tuple>::value;
876 
877  template <size_t I>
878  struct tuple_element : ::std::tr1::tuple_element<I, Tuple> {};
879 
880  template <size_t I>
881  static typename AddReference<
883  const Tuple& tuple) {
884  return ::std::tr1::get<I>(tuple);
885  }
886 };
887 template <typename TupleT>
889 #endif // GTEST_HAS_TR1_TUPLE
890 
891 #if GTEST_HAS_STD_TUPLE_
892 template <typename... Types>
893 struct TuplePolicy< ::std::tuple<Types...> > {
894  typedef ::std::tuple<Types...> Tuple;
895  static const size_t tuple_size = ::std::tuple_size<Tuple>::value;
896 
897  template <size_t I>
898  struct tuple_element : ::std::tuple_element<I, Tuple> {};
899 
900  template <size_t I>
902  const Tuple& tuple) {
903  return ::std::get<I>(tuple);
904  }
905 };
906 template <typename... Types>
907 const size_t TuplePolicy< ::std::tuple<Types...> >::tuple_size;
908 #endif // GTEST_HAS_STD_TUPLE_
909 
910 #if GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_
911 // This helper template allows PrintTo() for tuples and
912 // UniversalTersePrintTupleFieldsToStrings() to be defined by
913 // induction on the number of tuple fields. The idea is that
914 // TuplePrefixPrinter<N>::PrintPrefixTo(t, os) prints the first N
915 // fields in tuple t, and can be defined in terms of
916 // TuplePrefixPrinter<N - 1>.
917 //
918 // The inductive case.
919 template <size_t N>
920 struct TuplePrefixPrinter {
921  // Prints the first N fields of a tuple.
922  template <typename Tuple>
923  static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) {
924  TuplePrefixPrinter<N - 1>::PrintPrefixTo(t, os);
926  if (N > 1) {
928  *os << ", ";
929  }
931  typename TuplePolicy<Tuple>::template tuple_element<N - 1>::type>
932  ::Print(TuplePolicy<Tuple>::template get<N - 1>(t), os);
933  }
934 
935  // Tersely prints the first N fields of a tuple to a string vector,
936  // one element for each field.
937  template <typename Tuple>
938  static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) {
939  TuplePrefixPrinter<N - 1>::TersePrintPrefixToStrings(t, strings);
940  ::std::stringstream ss;
942  strings->push_back(ss.str());
943  }
944 };
945 
946 // Base case.
947 template <>
948 struct TuplePrefixPrinter<0> {
949  template <typename Tuple>
950  static void PrintPrefixTo(const Tuple&, ::std::ostream*) {}
951 
952  template <typename Tuple>
953  static void TersePrintPrefixToStrings(const Tuple&, Strings*) {}
954 };
955 
956 // Helper function for printing a tuple.
957 // Tuple must be either std::tr1::tuple or std::tuple type.
958 template <typename Tuple>
959 void PrintTupleTo(const Tuple& t, ::std::ostream* os) {
960  *os << "(";
961  TuplePrefixPrinter<TuplePolicy<Tuple>::tuple_size>::PrintPrefixTo(t, os);
962  *os << ")";
963 }
964 
965 // Prints the fields of a tuple tersely to a string vector, one
966 // element for each field. See the comment before
967 // UniversalTersePrint() for how we define "tersely".
968 template <typename Tuple>
969 Strings UniversalTersePrintTupleFieldsToStrings(const Tuple& value) {
970  Strings result;
971  TuplePrefixPrinter<TuplePolicy<Tuple>::tuple_size>::
972  TersePrintPrefixToStrings(value, &result);
973  return result;
974 }
975 #endif // GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_
976 
977 } // namespace internal
978 
979 template <typename T>
981  ::std::stringstream ss;
983  return ss.str();
984 }
985 
986 } // namespace testing
987 
988 // Include any custom printer added by the local installation.
989 // We must include this header at the end to make sure it can use the
990 // declarations from this file.
992 
993 #endif // GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_