|
string | TauVsDIS_MachineLearning_Differentiation.path "./data/JetSummary_p250_e20_1000events_r05.csv" |
|
list | TauVsDIS_MachineLearning_Differentiation.names ['n_track','charge_tot','eta','vertex','class'] |
|
tuple | TauVsDIS_MachineLearning_Differentiation.dataset pandas.read_csv(path, names=names) |
|
| TauVsDIS_MachineLearning_Differentiation.array dataset.values |
|
list | TauVsDIS_MachineLearning_Differentiation.X array[:,0:4] |
|
list | TauVsDIS_MachineLearning_Differentiation.Y array[:,4] |
|
float | TauVsDIS_MachineLearning_Differentiation.validation_size 0.60 |
|
int | TauVsDIS_MachineLearning_Differentiation.seed 7 |
|
tuple | TauVsDIS_MachineLearning_Differentiation.ding np.column_stack((X_train,Y_train)) |
|
tuple | TauVsDIS_MachineLearning_Differentiation.dong np.column_stack((X_validation,Y_validation)) |
|
string | TauVsDIS_MachineLearning_Differentiation.scoring 'accuracy' |
|
list | TauVsDIS_MachineLearning_Differentiation.models [] |
|
list | TauVsDIS_MachineLearning_Differentiation.results [] |
|
tuple | TauVsDIS_MachineLearning_Differentiation.kfold model_selection.KFold(n_splits=10, random_state=seed) |
|
tuple | TauVsDIS_MachineLearning_Differentiation.cv_results model_selection.cross_val_score(model, X_train, Y_train, cv=kfold, scoring=scoring) |
|
string | TauVsDIS_MachineLearning_Differentiation.msg "%s: %f (%f)" |
|
tuple | TauVsDIS_MachineLearning_Differentiation.ada AdaBoostClassifier() |
|
tuple | TauVsDIS_MachineLearning_Differentiation.predictions ada.predict(X_validation) |
|