Analysis Software
Documentation for sPHENIX simulation software
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
TauVsDIS_MachineLearning_Differentiation.py File Reference

Go to the source code of this file.

Namespaces

namespace  TauVsDIS_MachineLearning_Differentiation
 

Variables

string TauVsDIS_MachineLearning_Differentiation.path "./data/JetSummary_p250_e20_1000events_r05.csv"
 
list TauVsDIS_MachineLearning_Differentiation.names ['n_track','charge_tot','eta','vertex','class']
 
tuple TauVsDIS_MachineLearning_Differentiation.dataset pandas.read_csv(path, names=names)
 
 TauVsDIS_MachineLearning_Differentiation.array dataset.values
 
list TauVsDIS_MachineLearning_Differentiation.X array[:,0:4]
 
list TauVsDIS_MachineLearning_Differentiation.Y array[:,4]
 
float TauVsDIS_MachineLearning_Differentiation.validation_size 0.60
 
int TauVsDIS_MachineLearning_Differentiation.seed 7
 
tuple TauVsDIS_MachineLearning_Differentiation.ding np.column_stack((X_train,Y_train))
 
tuple TauVsDIS_MachineLearning_Differentiation.dong np.column_stack((X_validation,Y_validation))
 
string TauVsDIS_MachineLearning_Differentiation.scoring 'accuracy'
 
list TauVsDIS_MachineLearning_Differentiation.models []
 
list TauVsDIS_MachineLearning_Differentiation.results []
 
tuple TauVsDIS_MachineLearning_Differentiation.kfold model_selection.KFold(n_splits=10, random_state=seed)
 
tuple TauVsDIS_MachineLearning_Differentiation.cv_results model_selection.cross_val_score(model, X_train, Y_train, cv=kfold, scoring=scoring)
 
string TauVsDIS_MachineLearning_Differentiation.msg "%s: %f (%f)"
 
tuple TauVsDIS_MachineLearning_Differentiation.ada AdaBoostClassifier()
 
tuple TauVsDIS_MachineLearning_Differentiation.predictions ada.predict(X_validation)