Analysis Software
Documentation for
sPHENIX
simulation software
Home page
Related Pages
Modules
Namespaces
Classes
Files
Examples
External Links
File List
File Members
All
Classes
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Enumerator
Friends
Macros
Groups
Pages
quench.f
Go to the documentation of this file.
Or view
the newest version in sPHENIX GitHub for file quench.f
1
C
2
C
3
C
4
C
5
SUBROUTINE
quench
(JPJT,NTP)
6
dimension rdp(300),lqp(300),rdt(300),lqt(300)
7
common/hijcrdn/
yp
(3,300),
yt
(3,300)
8
SAVE
/hijcrdn/
9
common/hiparnt/
hipr1
(100),
ihpr2
(50),
hint1
(100),
ihnt2
(50)
10
SAVE
/hiparnt/
11
C
12
common/hijjet1/
npj
(300),
kfpj
(300,500),
pjpx
(300,500),
13
&
pjpy
(300,500),
pjpz
(300,500),
pjpe
(300,500),
14
&
pjpm
(300,500),
ntj
(300),
kftj
(300,500),
15
&
pjtx
(300,500),
pjty
(300,500),
pjtz
(300,500),
16
&
pjte
(300,500),
pjtm
(300,500)
17
SAVE
/hijjet1/
18
common/hijjet2/
nsg
,
njsg
(900),
iasg
(900,3),
k1sg
(900,100),
19
&
k2sg
(900,100),
pxsg
(900,100),
pysg
(900,100),
20
&
pzsg
(900,100),
pesg
(900,100),
pmsg
(900,100)
21
SAVE
/hijjet2/
22
common/histrng/
nfp
(300,15),
pp
(300,15),
nft
(300,15),
pt
(300,15)
23
SAVE
/histrng/
24
common/ranseed/
nseed
25
SAVE
/ranseed/
26
C
27
bb=
hint1
(19)
! Uzhi
28
phi
=
hint1
(20)
! Uzhi
29
bbx=bb*cos(
phi
)
! Uzhi
30
bby=bb*sin(
phi
)
! Uzhi
31
c
32
IF
(ntp.EQ.2)
go
to
400
33
IF
(ntp.EQ.3)
go
to
2000
34
C*******************************************************
35
C Jet interaction for proj jet in the direction PHIP
36
C******************************************************
37
C
38
IF
(
nfp
(jpjt,7).NE.1)
RETURN
39
40
jp=jpjt
41
DO
290
i
=1,
npj
(jp)
42
ptjet0=sqrt(
pjpx
(jp,
i
)**2+
pjpy
(jp,
i
)**2)
43
IF
(ptjet0.LE.
hipr1
(11))
go
to
290
44
ptot=sqrt(ptjet0*ptjet0+
pjpz
(jp,
i
)**2)
45
IF
(ptot.LT.
hipr1
(8))
go
to
290
46
phip=
ulangl
(
pjpx
(jp,
i
),
pjpy
(jp,
i
))
47
C******* find the wounded proj which can interact with jet***
48
kp=0
49
DO
100
i2
=1,
ihnt2
(1)
50
IF
(
nfp
(
i2
,5).NE.3 .OR.
i2
.EQ.jp)
go
to
100
51
dx=
yp
(1,
i2
)-
yp
(1,jp)
52
dy
=
yp
(2,
i2
)-
yp
(2,jp)
53
phi
=
ulangl
(dx,
dy
)
54
dphi=abs(
phi
-phip)
55
IF
(dphi.GE.
hipr1
(40)) dphi=2.*
hipr1
(40)-dphi
! Uzhi
56
IF
(dphi.GE.
hipr1
(40)/2.0)
go
to
100
57
rd0=sqrt(dx*dx+
dy
*
dy
)
58
IF
(rd0*sin(dphi).GT.
hipr1
(12))
go
to
100
59
kp=kp+1
60
lqp(kp)=
i2
61
rdp(kp)=cos(dphi)*rd0
62
100
CONTINUE
63
C******* rearrange according decending rd************
64
DO
110
i2
=1,kp-1
65
DO
110 j2=
i2
+1,kp
66
IF
(rdp(
i2
).LT.rdp(j2))
go
to
110
67
rd
=rdp(
i2
)
68
lq=lqp(
i2
)
69
rdp(
i2
)=rdp(j2)
70
lqp(
i2
)=lqp(j2)
71
rdp(j2)=
rd
72
lqp(j2)=lq
73
110
CONTINUE
74
C****** find wounded targ which can interact with jet********
75
kt=0
76
DO
120
i2
=1,
ihnt2
(3)
77
IF
(
nft
(
i2
,5).NE.3)
go
to
120
78
dx=
yt
(1,
i2
)-
yp
(1,jp)-bbx
79
dy
=
yt
(2,
i2
)-
yp
(2,jp)-bby
80
phi
=
ulangl
(dx,
dy
)
81
dphi=abs(
phi
-phip)
82
IF
(dphi.GE.
hipr1
(40)) dphi=2.*
hipr1
(40)-dphi
! Uzhi
83
IF
(dphi.GT.
hipr1
(40)/2.0)
go
to
120
84
rd0=sqrt(dx*dx+
dy
*
dy
)
85
IF
(rd0*sin(dphi).GT.
hipr1
(12))
go
to
120
86
kt=kt+1
87
lqt(kt)=
i2
88
rdt(kt)=cos(dphi)*rd0
89
120
CONTINUE
90
C******* rearrange according decending rd************
91
DO
130
i2
=1,kt-1
92
DO
130 j2=
i2
+1,kt
93
IF
(rdt(
i2
).LT.rdt(j2))
go
to
130
94
rd
=rdt(
i2
)
95
lq=lqt(
i2
)
96
rdt(
i2
)=rdt(j2)
97
lqt(
i2
)=lqt(j2)
98
rdt(j2)=
rd
99
lqt(j2)=lq
100
130
CONTINUE
101
102
mp=0
103
mt
=0
104
r0
=0.0
105
nq=0
106
dp=0.0
107
ptot=sqrt(
pjpx
(jp,
i
)**2+
pjpy
(jp,
i
)**2+
pjpz
(jp,
i
)**2)
108
v1
=
pjpx
(jp,
i
)/ptot
109
v2
=
pjpy
(jp,
i
)/ptot
110
v3
=
pjpz
(jp,
i
)/ptot
111
112
200 rn=
atl_ran
(
nseed
)
113
210
IF
(
mt
.GE.kt .AND. mp.GE.kp)
go
to
290
114
IF
(
mt
.GE.kt)
go
to
220
115
IF
(mp.GE.kp)
go
to
240
116
IF
(rdp(mp+1).GT.rdt(
mt
+1))
go
to
240
117
220 mp=mp+1
118
drr=rdp(mp)-
r0
119
IF
(rn.GE.1.0-exp(-drr/
hipr1
(13)))
go
to
210
120
dp=drr*
hipr1
(14)
121
IF
(
kfpj
(jp,
i
).NE.21) dp=0.5*dp
122
C ********string tension of quark jet is 0.5 of gluon's
123
IF
(dp.LE.0.2)
go
to
210
124
IF
(ptot.LE.0.4)
go
to
290
125
IF
(ptot.LE.dp) dp=ptot-0.2
126
de=dp
127
128
IF
(
kfpj
(jp,
i
).NE.21)
THEN
129
prshu=
pp
(lqp(mp),1)**2+
pp
(lqp(mp),2)**2
130
& +
pp
(lqp(mp),3)**2
131
de=sqrt(
pjpm
(jp,
i
)**2+ptot**2)
132
& -sqrt(
pjpm
(jp,
i
)**2+(ptot-dp)**2)
133
ershu=(
pp
(lqp(mp),4)+de-dp)**2
134
amshu=ershu-prshu
135
IF
(amshu.LT.
hipr1
(1)*
hipr1
(1))
go
to
210
136
pp
(lqp(mp),4)=sqrt(ershu)
137
pp
(lqp(mp),5)=sqrt(amshu)
138
ENDIF
139
C ********reshuffle the energy when jet has mass
140
r0
=rdp(mp)
141
dp1=dp*
v1
142
dp2=dp*
v2
143
dp3=dp*
v3
144
C ********momentum and energy transfer from jet
145
146
npj
(lqp(mp))=
npj
(lqp(mp))+1
147
kfpj
(lqp(mp),
npj
(lqp(mp)))=21
148
pjpx
(lqp(mp),
npj
(lqp(mp)))=dp1
149
pjpy
(lqp(mp),
npj
(lqp(mp)))=dp2
150
pjpz
(lqp(mp),
npj
(lqp(mp)))=dp3
151
pjpe
(lqp(mp),
npj
(lqp(mp)))=dp
152
pjpm
(lqp(mp),
npj
(lqp(mp)))=0.0
153
go
to
260
154
155
240
mt
=
mt
+1
156
drr=rdt(
mt
)-
r0
157
IF
(rn.GE.1.0-exp(-drr/
hipr1
(13)))
go
to
210
158
dp=drr*
hipr1
(14)
159
IF
(dp.LE.0.2)
go
to
210
160
IF
(ptot.LE.0.4)
go
to
290
161
IF
(ptot.LE.dp) dp=ptot-0.2
162
de=dp
163
164
IF
(
kfpj
(jp,
i
).NE.21)
THEN
165
prshu=
pt
(lqt(
mt
),1)**2+
pt
(lqt(
mt
),2)**2
166
& +
pt
(lqt(
mt
),3)**2
167
de=sqrt(
pjpm
(jp,
i
)**2+ptot**2)
168
& -sqrt(
pjpm
(jp,
i
)**2+(ptot-dp)**2)
169
ershu=(
pt
(lqt(
mt
),4)+de-dp)**2
170
amshu=ershu-prshu
171
IF
(amshu.LT.
hipr1
(1)*
hipr1
(1))
go
to
210
172
pt
(lqt(
mt
),4)=sqrt(ershu)
173
pt
(lqt(
mt
),5)=sqrt(amshu)
174
ENDIF
175
C ********reshuffle the energy when jet has mass
176
177
r0
=rdt(
mt
)
178
dp1=dp*
v1
179
dp2=dp*
v2
180
dp3=dp*
v3
181
C ********momentum and energy transfer from jet
182
ntj
(lqt(
mt
))=
ntj
(lqt(
mt
))+1
183
kftj
(lqt(
mt
),
ntj
(lqt(
mt
)))=21
184
pjtx
(lqt(
mt
),
ntj
(lqt(
mt
)))=dp1
185
pjty
(lqt(
mt
),
ntj
(lqt(
mt
)))=dp2
186
pjtz
(lqt(
mt
),
ntj
(lqt(
mt
)))=dp3
187
pjte
(lqt(
mt
),
ntj
(lqt(
mt
)))=dp
188
pjtm
(lqt(
mt
),
ntj
(lqt(
mt
)))=0.0
189
190
260
pjpx
(jp,
i
)=(ptot-dp)*
v1
191
pjpy
(jp,
i
)=(ptot-dp)*
v2
192
pjpz
(jp,
i
)=(ptot-dp)*
v3
193
pjpe
(jp,
i
)=
pjpe
(jp,
i
)-de
194
195
ptot=ptot-dp
196
nq=nq+1
197
go
to
200
198
290
CONTINUE
199
200
RETURN
201
202
C*******************************************************
203
C Jet interaction for target jet in the direction PHIT
204
C******************************************************
205
C
206
C******* find the wounded proj which can interact with jet***
207
208
400
IF
(
nft
(jpjt,7).NE.1)
RETURN
209
jt=jpjt
210
DO
690
i
=1,
ntj
(jt)
211
ptjet0=sqrt(
pjtx
(jt,
i
)**2+
pjty
(jt,
i
)**2)
212
IF
(ptjet0.LE.
hipr1
(11))
go
to
690
213
ptot=sqrt(ptjet0*ptjet0+
pjtz
(jt,
i
)**2)
214
IF
(ptot.LT.
hipr1
(8))
go
to
690
215
phit=
ulangl
(
pjtx
(jt,
i
),
pjty
(jt,
i
))
216
kp=0
217
DO
500
i2
=1,
ihnt2
(1)
218
IF
(
nfp
(
i2
,5).NE.3)
go
to
500
219
dx=
yp
(1,
i2
)+bbx-
yt
(1,jt)
220
dy
=
yp
(2,
i2
)+bby-
yt
(2,jt)
221
phi
=
ulangl
(dx,
dy
)
222
dphi=abs(
phi
-phit)
223
IF
(dphi.GE.
hipr1
(40)) dphi=2.*
hipr1
(40)-dphi
! Uzhi
224
IF
(dphi.GT.
hipr1
(40)/2.0)
go
to
500
225
rd0=sqrt(dx*dx+
dy
*
dy
)
226
IF
(rd0*sin(dphi).GT.
hipr1
(12))
go
to
500
227
kp=kp+1
228
lqp(kp)=
i2
229
rdp(kp)=cos(dphi)*rd0
230
500
CONTINUE
231
C******* rearrange according to decending rd************
232
DO
510
i2
=1,kp-1
233
DO
510 j2=
i2
+1,kp
234
IF
(rdp(
i2
).LT.rdp(j2))
go
to
510
235
rd
=rdp(
i2
)
236
lq=lqp(
i2
)
237
rdp(
i2
)=rdp(j2)
238
lqp(
i2
)=lqp(j2)
239
rdp(j2)=
rd
240
lqp(j2)=lq
241
510
CONTINUE
242
C****** find wounded targ which can interact with jet********
243
kt=0
244
DO
520
i2
=1,
ihnt2
(3)
245
IF
(
nft
(
i2
,5).NE.3 .OR.
i2
.EQ.jt)
go
to
520
246
dx=
yt
(1,
i2
)-
yt
(1,jt)
247
dy
=
yt
(2,
i2
)-
yt
(2,jt)
248
phi
=
ulangl
(dx,
dy
)
249
dphi=abs(
phi
-phit)
250
IF
(dphi.GE.
hipr1
(40)) dphi=2.*
hipr1
(40)-dphi
! Uzhi
251
IF
(dphi.GT.
hipr1
(40)/2.0)
go
to
520
252
rd0=sqrt(dx*dx+
dy
*
dy
)
253
IF
(rd0*sin(dphi).GT.
hipr1
(12))
go
to
520
254
kt=kt+1
255
lqt(kt)=
i2
256
rdt(kt)=cos(dphi)*rd0
257
520
CONTINUE
258
C******* rearrange according to decending rd************
259
DO
530
i2
=1,kt-1
260
DO
530 j2=
i2
+1,kt
261
IF
(rdt(
i2
).LT.rdt(j2))
go
to
530
262
rd
=rdt(
i2
)
263
lq=lqt(
i2
)
264
rdt(
i2
)=rdt(j2)
265
lqt(
i2
)=lqt(j2)
266
rdt(j2)=
rd
267
lqt(j2)=lq
268
530
CONTINUE
269
270
mp=0
271
mt
=0
272
nq=0
273
dp=0.0
274
r0
=0.0
275
ptot=sqrt(
pjtx
(jt,
i
)**2+
pjty
(jt,
i
)**2+
pjtz
(jt,
i
)**2)
276
v1
=
pjtx
(jt,
i
)/ptot
277
v2
=
pjty
(jt,
i
)/ptot
278
v3
=
pjtz
(jt,
i
)/ptot
279
280
600 rn=
atl_ran
(
nseed
)
281
610
IF
(
mt
.GE.kt .AND. mp.GE.kp)
go
to
690
282
IF
(
mt
.GE.kt)
go
to
620
283
IF
(mp.GE.kp)
go
to
640
284
IF
(rdp(mp+1).GT.rdt(
mt
+1))
go
to
640
285
620 mp=mp+1
286
drr=rdp(mp)-
r0
287
IF
(rn.GE.1.0-exp(-drr/
hipr1
(13)))
go
to
610
288
dp=drr*
hipr1
(14)
289
IF
(
kftj
(jt,
i
).NE.21) dp=0.5*dp
290
C ********string tension of quark jet is 0.5 of gluon's
291
IF
(dp.LE.0.2)
go
to
610
292
IF
(ptot.LE.0.4)
go
to
690
293
IF
(ptot.LE.dp) dp=ptot-0.2
294
de=dp
295
C
296
IF
(
kftj
(jt,
i
).NE.21)
THEN
297
prshu=
pp
(lqp(mp),1)**2+
pp
(lqp(mp),2)**2
298
& +
pp
(lqp(mp),3)**2
299
de=sqrt(
pjtm
(jt,
i
)**2+ptot**2)
300
& -sqrt(
pjtm
(jt,
i
)**2+(ptot-dp)**2)
301
ershu=(
pp
(lqp(mp),4)+de-dp)**2
302
amshu=ershu-prshu
303
IF
(amshu.LT.
hipr1
(1)*
hipr1
(1))
go
to
610
304
pp
(lqp(mp),4)=sqrt(ershu)
305
pp
(lqp(mp),5)=sqrt(amshu)
306
ENDIF
307
C ********reshuffle the energy when jet has mass
308
C
309
r0
=rdp(mp)
310
dp1=dp*
v1
311
dp2=dp*
v2
312
dp3=dp*
v3
313
C ********momentum and energy transfer from jet
314
npj
(lqp(mp))=
npj
(lqp(mp))+1
315
kfpj
(lqp(mp),
npj
(lqp(mp)))=21
316
pjpx
(lqp(mp),
npj
(lqp(mp)))=dp1
317
pjpy
(lqp(mp),
npj
(lqp(mp)))=dp2
318
pjpz
(lqp(mp),
npj
(lqp(mp)))=dp3
319
pjpe
(lqp(mp),
npj
(lqp(mp)))=dp
320
pjpm
(lqp(mp),
npj
(lqp(mp)))=0.0
321
322
go
to
660
323
324
640
mt
=
mt
+1
325
drr=rdt(
mt
)-
r0
326
IF
(rn.GE.1.0-exp(-drr/
hipr1
(13)))
go
to
610
327
dp=drr*
hipr1
(14)
328
IF
(dp.LE.0.2)
go
to
610
329
IF
(ptot.LE.0.4)
go
to
690
330
IF
(ptot.LE.dp) dp=ptot-0.2
331
de=dp
332
333
IF
(
kftj
(jt,
i
).NE.21)
THEN
334
prshu=
pt
(lqt(
mt
),1)**2+
pt
(lqt(
mt
),2)**2
335
& +
pt
(lqt(
mt
),3)**2
336
de=sqrt(
pjtm
(jt,
i
)**2+ptot**2)
337
& -sqrt(
pjtm
(jt,
i
)**2+(ptot-dp)**2)
338
ershu=(
pt
(lqt(
mt
),4)+de-dp)**2
339
amshu=ershu-prshu
340
IF
(amshu.LT.
hipr1
(1)*
hipr1
(1))
go
to
610
341
pt
(lqt(
mt
),4)=sqrt(ershu)
342
pt
(lqt(
mt
),5)=sqrt(amshu)
343
ENDIF
344
C ********reshuffle the energy when jet has mass
345
346
r0
=rdt(
mt
)
347
dp1=dp*
v1
348
dp2=dp*
v2
349
dp3=dp*
v3
350
C ********momentum and energy transfer from jet
351
ntj
(lqt(
mt
))=
ntj
(lqt(
mt
))+1
352
kftj
(lqt(
mt
),
ntj
(lqt(
mt
)))=21
353
pjtx
(lqt(
mt
),
ntj
(lqt(
mt
)))=dp1
354
pjty
(lqt(
mt
),
ntj
(lqt(
mt
)))=dp2
355
pjtz
(lqt(
mt
),
ntj
(lqt(
mt
)))=dp3
356
pjte
(lqt(
mt
),
ntj
(lqt(
mt
)))=dp
357
pjtm
(lqt(
mt
),
ntj
(lqt(
mt
)))=0.0
358
359
660
pjtx
(jt,
i
)=(ptot-dp)*
v1
360
pjty
(jt,
i
)=(ptot-dp)*
v2
361
pjtz
(jt,
i
)=(ptot-dp)*
v3
362
pjte
(jt,
i
)=
pjte
(jt,
i
)-de
363
364
ptot=ptot-dp
365
nq=nq+1
366
go
to
600
367
690
CONTINUE
368
RETURN
369
C********************************************************
370
C Q-QBAR jet interaction
371
C********************************************************
372
2000 isg=jpjt
373
IF
(
iasg
(isg,3).NE.1)
RETURN
374
C
375
jp=
iasg
(isg,1)
376
jt=
iasg
(isg,2)
377
xj=(
yp
(1,jp)+bbx+
yt
(1,jt))/2.0
378
yj=(
yp
(2,jp)+bby+
yt
(2,jt))/2.0
379
DO
2690
i
=1,
njsg
(isg)
380
ptjet0=sqrt(
pxsg
(isg,
i
)**2+
pysg
(isg,
i
)**2)
381
IF
(ptjet0.LE.
hipr1
(11).OR.
pesg
(isg,
i
).LT.
hipr1
(1))
382
&
go
to
2690
383
ptot=sqrt(ptjet0*ptjet0+
pzsg
(isg,
i
)**2)
384
IF
(ptot.LT.
max
(
hipr1
(1),
hipr1
(8)))
go
to
2690
385
phiq=
ulangl
(
pxsg
(isg,
i
),
pysg
(isg,
i
))
386
kp=0
387
DO
2500
i2
=1,
ihnt2
(1)
388
IF
(
nfp
(
i2
,5).NE.3.OR.
i2
.EQ.jp)
go
to
2500
389
dx=
yp
(1,
i2
)+bbx-xj
390
dy
=
yp
(2,
i2
)+bby-yj
391
phi
=
ulangl
(dx,
dy
)
392
dphi=abs(
phi
-phiq)
393
IF
(dphi.GE.
hipr1
(40)) dphi=2.*
hipr1
(40)-dphi
! Uzhi
394
IF
(dphi.GT.
hipr1
(40)/2.0)
go
to
2500
395
rd0=sqrt(dx*dx+
dy
*
dy
)
396
IF
(rd0*sin(dphi).GT.
hipr1
(12))
go
to
2500
397
kp=kp+1
398
lqp(kp)=
i2
399
rdp(kp)=cos(dphi)*rd0
400
2500
CONTINUE
401
C******* rearrange according to decending rd************
402
DO
2510
i2
=1,kp-1
403
DO
2510 j2=
i2
+1,kp
404
IF
(rdp(
i2
).LT.rdp(j2))
go
to
2510
405
rd
=rdp(
i2
)
406
lq=lqp(
i2
)
407
rdp(
i2
)=rdp(j2)
408
lqp(
i2
)=lqp(j2)
409
rdp(j2)=
rd
410
lqp(j2)=lq
411
2510
CONTINUE
412
C****** find wounded targ which can interact with jet********
413
kt=0
414
DO
2520
i2
=1,
ihnt2
(3)
415
IF
(
nft
(
i2
,5).NE.3 .OR.
i2
.EQ.jt)
go
to
2520
416
dx=
yt
(1,
i2
)-xj
417
dy
=
yt
(2,
i2
)-yj
418
phi
=
ulangl
(dx,
dy
)
419
dphi=abs(
phi
-phiq)
420
IF
(dphi.GE.
hipr1
(40)) dphi=2.*
hipr1
(40)-dphi
! Uzhi
421
IF
(dphi.GT.
hipr1
(40)/2.0)
go
to
2520
422
rd0=sqrt(dx*dx+
dy
*
dy
)
423
IF
(rd0*sin(dphi).GT.
hipr1
(12))
go
to
2520
424
kt=kt+1
425
lqt(kt)=
i2
426
rdt(kt)=cos(dphi)*rd0
427
2520
CONTINUE
428
C******* rearrange according to decending rd************
429
DO
2530
i2
=1,kt-1
430
DO
2530 j2=
i2
+1,kt
431
IF
(rdt(
i2
).LT.rdt(j2))
go
to
2530
432
rd
=rdt(
i2
)
433
lq=lqt(
i2
)
434
rdt(
i2
)=rdt(j2)
435
lqt(
i2
)=lqt(j2)
436
rdt(j2)=
rd
437
lqt(j2)=lq
438
2530
CONTINUE
439
440
mp=0
441
mt
=0
442
nq=0
443
dp=0.0
444
r0
=0.0
445
ptot=sqrt(
pxsg
(isg,
i
)**2+
pysg
(isg,
i
)**2
446
& +
pzsg
(isg,
i
)**2)
447
v1
=
pxsg
(isg,
i
)/ptot
448
v2
=
pysg
(isg,
i
)/ptot
449
v3
=
pzsg
(isg,
i
)/ptot
450
451
2600 rn=
atl_ran
(
nseed
)
452
2610
IF
(
mt
.GE.kt .AND. mp.GE.kp)
go
to
2690
453
IF
(
mt
.GE.kt)
go
to
2620
454
IF
(mp.GE.kp)
go
to
2640
455
IF
(rdp(mp+1).GT.rdt(
mt
+1))
go
to
2640
456
2620 mp=mp+1
457
drr=rdp(mp)-
r0
458
IF
(rn.GE.1.0-exp(-drr/
hipr1
(13)))
go
to
2610
459
dp=drr*
hipr1
(14)/2.0
460
IF
(dp.LE.0.2)
go
to
2610
461
IF
(ptot.LE.0.4)
go
to
2690
462
IF
(ptot.LE.dp) dp=ptot-0.2
463
de=dp
464
C
465
IF
(
k2sg
(isg,
i
).NE.21)
THEN
466
IF
(ptot.LT.dp+
hipr1
(1))
go
to
2690
467
prshu=
pp
(lqp(mp),1)**2+
pp
(lqp(mp),2)**2
468
& +
pp
(lqp(mp),3)**2
469
de=sqrt(
pmsg
(isg,
i
)**2+ptot**2)
470
& -sqrt(
pmsg
(isg,
i
)**2+(ptot-dp)**2)
471
ershu=(
pp
(lqp(mp),4)+de-dp)**2
472
amshu=ershu-prshu
473
IF
(amshu.LT.
hipr1
(1)*
hipr1
(1))
go
to
2610
474
pp
(lqp(mp),4)=sqrt(ershu)
475
pp
(lqp(mp),5)=sqrt(amshu)
476
ENDIF
477
C ********reshuffle the energy when jet has mass
478
C
479
r0
=rdp(mp)
480
dp1=dp*
v1
481
dp2=dp*
v2
482
dp3=dp*
v3
483
C ********momentum and energy transfer from jet
484
npj
(lqp(mp))=
npj
(lqp(mp))+1
485
kfpj
(lqp(mp),
npj
(lqp(mp)))=21
486
pjpx
(lqp(mp),
npj
(lqp(mp)))=dp1
487
pjpy
(lqp(mp),
npj
(lqp(mp)))=dp2
488
pjpz
(lqp(mp),
npj
(lqp(mp)))=dp3
489
pjpe
(lqp(mp),
npj
(lqp(mp)))=dp
490
pjpm
(lqp(mp),
npj
(lqp(mp)))=0.0
491
492
go
to
2660
493
494
2640
mt
=
mt
+1
495
drr=rdt(
mt
)-
r0
496
IF
(rn.GE.1.0-exp(-drr/
hipr1
(13)))
go
to
2610
497
dp=drr*
hipr1
(14)
498
IF
(dp.LE.0.2)
go
to
2610
499
IF
(ptot.LE.0.4)
go
to
2690
500
IF
(ptot.LE.dp) dp=ptot-0.2
501
de=dp
502
503
IF
(
k2sg
(isg,
i
).NE.21)
THEN
504
IF
(ptot.LT.dp+
hipr1
(1))
go
to
2690
505
prshu=
pt
(lqt(
mt
),1)**2+
pt
(lqt(
mt
),2)**2
506
& +
pt
(lqt(
mt
),3)**2
507
de=sqrt(
pmsg
(isg,
i
)**2+ptot**2)
508
& -sqrt(
pmsg
(isg,
i
)**2+(ptot-dp)**2)
509
ershu=(
pt
(lqt(
mt
),4)+de-dp)**2
510
amshu=ershu-prshu
511
IF
(amshu.LT.
hipr1
(1)*
hipr1
(1))
go
to
2610
512
pt
(lqt(
mt
),4)=sqrt(ershu)
513
pt
(lqt(
mt
),5)=sqrt(amshu)
514
ENDIF
515
C ********reshuffle the energy when jet has mass
516
517
r0
=rdt(
mt
)
518
dp1=dp*
v1
519
dp2=dp*
v2
520
dp3=dp*
v3
521
C ********momentum and energy transfer from jet
522
ntj
(lqt(
mt
))=
ntj
(lqt(
mt
))+1
523
kftj
(lqt(
mt
),
ntj
(lqt(
mt
)))=21
524
pjtx
(lqt(
mt
),
ntj
(lqt(
mt
)))=dp1
525
pjty
(lqt(
mt
),
ntj
(lqt(
mt
)))=dp2
526
pjtz
(lqt(
mt
),
ntj
(lqt(
mt
)))=dp3
527
pjte
(lqt(
mt
),
ntj
(lqt(
mt
)))=dp
528
pjtm
(lqt(
mt
),
ntj
(lqt(
mt
)))=0.0
529
530
2660
pxsg
(isg,
i
)=(ptot-dp)*
v1
531
pysg
(isg,
i
)=(ptot-dp)*
v2
532
pzsg
(isg,
i
)=(ptot-dp)*
v3
533
pesg
(isg,
i
)=
pesg
(isg,
i
)-de
534
535
ptot=ptot-dp
536
nq=nq+1
537
go
to
2600
538
2690
CONTINUE
539
RETURN
540
END
coresoftware
blob
master
generators
hijing
src
quench.f
Built by
Jin Huang
. updated:
Sat Feb 17 2024 22:18:00
using
1.8.2 with
sPHENIX GitHub integration