Analysis Software
Documentation for sPHENIX simulation software
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
gmock-actions.h
Go to the documentation of this file. Or view the newest version in sPHENIX GitHub for file gmock-actions.h
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Author: wan@google.com (Zhanyong Wan)
31 
32 // Google Mock - a framework for writing C++ mock classes.
33 //
34 // This file implements some commonly used actions.
35 
36 #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
37 #define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
38 
39 #ifndef _WIN32_WCE
40 # include <errno.h>
41 #endif
42 
43 #include <algorithm>
44 #include <string>
45 
48 
49 #if GTEST_HAS_STD_TYPE_TRAITS_ // Defined by gtest-port.h via gmock-port.h.
50 #include <type_traits>
51 #endif
52 
53 namespace testing {
54 
55 // To implement an action Foo, define:
56 // 1. a class FooAction that implements the ActionInterface interface, and
57 // 2. a factory function that creates an Action object from a
58 // const FooAction*.
59 //
60 // The two-level delegation design follows that of Matcher, providing
61 // consistency for extension developers. It also eases ownership
62 // management as Action objects can now be copied like plain values.
63 
64 namespace internal {
65 
66 template <typename F1, typename F2>
68 
69 // BuiltInDefaultValueGetter<T, true>::Get() returns a
70 // default-constructed T value. BuiltInDefaultValueGetter<T,
71 // false>::Get() crashes with an error.
72 //
73 // This primary template is used when kDefaultConstructible is true.
74 template <typename T, bool kDefaultConstructible>
76  static T Get() { return T(); }
77 };
78 template <typename T>
80  static T Get() {
81  Assert(false, __FILE__, __LINE__,
82  "Default action undefined for the function return type.");
83  return internal::Invalid<T>();
84  // The above statement will never be reached, but is required in
85  // order for this function to compile.
86  }
87 };
88 
89 // BuiltInDefaultValue<T>::Get() returns the "built-in" default value
90 // for type T, which is NULL when T is a raw pointer type, 0 when T is
91 // a numeric type, false when T is bool, or "" when T is string or
92 // std::string. In addition, in C++11 and above, it turns a
93 // default-constructed T value if T is default constructible. For any
94 // other type T, the built-in default T value is undefined, and the
95 // function will abort the process.
96 template <typename T>
98  public:
99 #if GTEST_HAS_STD_TYPE_TRAITS_
100  // This function returns true iff type T has a built-in default value.
101  static bool Exists() {
103  }
104 
105  static T Get() {
108  }
109 
110 #else // GTEST_HAS_STD_TYPE_TRAITS_
111  // This function returns true iff type T has a built-in default value.
112  static bool Exists() {
113  return false;
114  }
115 
116  static T Get() {
118  }
119 
120 #endif // GTEST_HAS_STD_TYPE_TRAITS_
121 };
122 
123 // This partial specialization says that we use the same built-in
124 // default value for T and const T.
125 template <typename T>
126 class BuiltInDefaultValue<const T> {
127  public:
128  static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
129  static T Get() { return BuiltInDefaultValue<T>::Get(); }
130 };
131 
132 // This partial specialization defines the default values for pointer
133 // types.
134 template <typename T>
136  public:
137  static bool Exists() { return true; }
138  static T* Get() { return NULL; }
139 };
140 
141 // The following specializations define the default values for
142 // specific types we care about.
143 #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
144  template <> \
145  class BuiltInDefaultValue<type> { \
146  public: \
147  static bool Exists() { return true; } \
148  static type Get() { return value; } \
149  }
150 
152 #if GTEST_HAS_GLOBAL_STRING
154 #endif // GTEST_HAS_GLOBAL_STRING
160 
161 // There's no need for a default action for signed wchar_t, as that
162 // type is the same as wchar_t for gcc, and invalid for MSVC.
163 //
164 // There's also no need for a default action for unsigned wchar_t, as
165 // that type is the same as unsigned int for gcc, and invalid for
166 // MSVC.
167 #if GMOCK_WCHAR_T_IS_NATIVE_
168 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT
169 #endif
170 
171 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT
172 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT
175 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT
176 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT
181 
182 #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
183 
184 } // namespace internal
185 
186 // When an unexpected function call is encountered, Google Mock will
187 // let it return a default value if the user has specified one for its
188 // return type, or if the return type has a built-in default value;
189 // otherwise Google Mock won't know what value to return and will have
190 // to abort the process.
191 //
192 // The DefaultValue<T> class allows a user to specify the
193 // default value for a type T that is both copyable and publicly
194 // destructible (i.e. anything that can be used as a function return
195 // type). The usage is:
196 //
197 // // Sets the default value for type T to be foo.
198 // DefaultValue<T>::Set(foo);
199 template <typename T>
201  public:
202  // Sets the default value for type T; requires T to be
203  // copy-constructable and have a public destructor.
204  static void Set(T x) {
205  delete producer_;
206  producer_ = new FixedValueProducer(x);
207  }
208 
209  // Provides a factory function to be called to generate the default value.
210  // This method can be used even if T is only move-constructible, but it is not
211  // limited to that case.
212  typedef T (*FactoryFunction)();
213  static void SetFactory(FactoryFunction factory) {
214  delete producer_;
215  producer_ = new FactoryValueProducer(factory);
216  }
217 
218  // Unsets the default value for type T.
219  static void Clear() {
220  delete producer_;
221  producer_ = NULL;
222  }
223 
224  // Returns true iff the user has set the default value for type T.
225  static bool IsSet() { return producer_ != NULL; }
226 
227  // Returns true if T has a default return value set by the user or there
228  // exists a built-in default value.
229  static bool Exists() {
231  }
232 
233  // Returns the default value for type T if the user has set one;
234  // otherwise returns the built-in default value. Requires that Exists()
235  // is true, which ensures that the return value is well-defined.
236  static T Get() {
237  return producer_ == NULL ?
239  }
240 
241  private:
243  public:
244  virtual ~ValueProducer() {}
245  virtual T Produce() = 0;
246  };
247 
249  public:
250  explicit FixedValueProducer(T value) : value_(value) {}
251  virtual T Produce() { return value_; }
252 
253  private:
254  const T value_;
256  };
257 
259  public:
261  : factory_(factory) {}
262  virtual T Produce() { return factory_(); }
263 
264  private:
267  };
268 
270 };
271 
272 // This partial specialization allows a user to set default values for
273 // reference types.
274 template <typename T>
275 class DefaultValue<T&> {
276  public:
277  // Sets the default value for type T&.
278  static void Set(T& x) { // NOLINT
279  address_ = &x;
280  }
281 
282  // Unsets the default value for type T&.
283  static void Clear() {
284  address_ = NULL;
285  }
286 
287  // Returns true iff the user has set the default value for type T&.
288  static bool IsSet() { return address_ != NULL; }
289 
290  // Returns true if T has a default return value set by the user or there
291  // exists a built-in default value.
292  static bool Exists() {
293  return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
294  }
295 
296  // Returns the default value for type T& if the user has set one;
297  // otherwise returns the built-in default value if there is one;
298  // otherwise aborts the process.
299  static T& Get() {
300  return address_ == NULL ?
302  }
303 
304  private:
305  static T* address_;
306 };
307 
308 // This specialization allows DefaultValue<void>::Get() to
309 // compile.
310 template <>
311 class DefaultValue<void> {
312  public:
313  static bool Exists() { return true; }
314  static void Get() {}
315 };
316 
317 // Points to the user-set default value for type T.
318 template <typename T>
319 typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = NULL;
320 
321 // Points to the user-set default value for type T&.
322 template <typename T>
324 
325 // Implement this interface to define an action for function type F.
326 template <typename F>
328  public:
329  typedef typename internal::Function<F>::Result Result;
330  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
331 
333  virtual ~ActionInterface() {}
334 
335  // Performs the action. This method is not const, as in general an
336  // action can have side effects and be stateful. For example, a
337  // get-the-next-element-from-the-collection action will need to
338  // remember the current element.
339  virtual Result Perform(const ArgumentTuple& args) = 0;
340 
341  private:
343 };
344 
345 // An Action<F> is a copyable and IMMUTABLE (except by assignment)
346 // object that represents an action to be taken when a mock function
347 // of type F is called. The implementation of Action<T> is just a
348 // linked_ptr to const ActionInterface<T>, so copying is fairly cheap.
349 // Don't inherit from Action!
350 //
351 // You can view an object implementing ActionInterface<F> as a
352 // concrete action (including its current state), and an Action<F>
353 // object as a handle to it.
354 template <typename F>
355 class Action {
356  public:
357  typedef typename internal::Function<F>::Result Result;
358  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
359 
360  // Constructs a null Action. Needed for storing Action objects in
361  // STL containers.
362  Action() : impl_(NULL) {}
363 
364  // Constructs an Action from its implementation. A NULL impl is
365  // used to represent the "do-default" action.
366  explicit Action(ActionInterface<F>* impl) : impl_(impl) {}
367 
368  // Copy constructor.
369  Action(const Action& action) : impl_(action.impl_) {}
370 
371  // This constructor allows us to turn an Action<Func> object into an
372  // Action<F>, as long as F's arguments can be implicitly converted
373  // to Func's and Func's return type can be implicitly converted to
374  // F's.
375  template <typename Func>
376  explicit Action(const Action<Func>& action);
377 
378  // Returns true iff this is the DoDefault() action.
379  bool IsDoDefault() const { return impl_.get() == NULL; }
380 
381  // Performs the action. Note that this method is const even though
382  // the corresponding method in ActionInterface is not. The reason
383  // is that a const Action<F> means that it cannot be re-bound to
384  // another concrete action, not that the concrete action it binds to
385  // cannot change state. (Think of the difference between a const
386  // pointer and a pointer to const.)
389  !IsDoDefault(), __FILE__, __LINE__,
390  "You are using DoDefault() inside a composite action like "
391  "DoAll() or WithArgs(). This is not supported for technical "
392  "reasons. Please instead spell out the default action, or "
393  "assign the default action to an Action variable and use "
394  "the variable in various places.");
395  return impl_->Perform(args);
396  }
397 
398  private:
399  template <typename F1, typename F2>
401 
403 };
404 
405 // The PolymorphicAction class template makes it easy to implement a
406 // polymorphic action (i.e. an action that can be used in mock
407 // functions of than one type, e.g. Return()).
408 //
409 // To define a polymorphic action, a user first provides a COPYABLE
410 // implementation class that has a Perform() method template:
411 //
412 // class FooAction {
413 // public:
414 // template <typename Result, typename ArgumentTuple>
415 // Result Perform(const ArgumentTuple& args) const {
416 // // Processes the arguments and returns a result, using
417 // // tr1::get<N>(args) to get the N-th (0-based) argument in the tuple.
418 // }
419 // ...
420 // };
421 //
422 // Then the user creates the polymorphic action using
423 // MakePolymorphicAction(object) where object has type FooAction. See
424 // the definition of Return(void) and SetArgumentPointee<N>(value) for
425 // complete examples.
426 template <typename Impl>
428  public:
429  explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
430 
431  template <typename F>
432  operator Action<F>() const {
433  return Action<F>(new MonomorphicImpl<F>(impl_));
434  }
435 
436  private:
437  template <typename F>
438  class MonomorphicImpl : public ActionInterface<F> {
439  public:
440  typedef typename internal::Function<F>::Result Result;
441  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
442 
443  explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
444 
445  virtual Result Perform(const ArgumentTuple& args) {
446  return impl_.template Perform<Result>(args);
447  }
448 
449  private:
450  Impl impl_;
451 
453  };
454 
455  Impl impl_;
456 
458 };
459 
460 // Creates an Action from its implementation and returns it. The
461 // created Action object owns the implementation.
462 template <typename F>
464  return Action<F>(impl);
465 }
466 
467 // Creates a polymorphic action from its implementation. This is
468 // easier to use than the PolymorphicAction<Impl> constructor as it
469 // doesn't require you to explicitly write the template argument, e.g.
470 //
471 // MakePolymorphicAction(foo);
472 // vs
473 // PolymorphicAction<TypeOfFoo>(foo);
474 template <typename Impl>
476  return PolymorphicAction<Impl>(impl);
477 }
478 
479 namespace internal {
480 
481 // Allows an Action<F2> object to pose as an Action<F1>, as long as F2
482 // and F1 are compatible.
483 template <typename F1, typename F2>
484 class ActionAdaptor : public ActionInterface<F1> {
485  public:
486  typedef typename internal::Function<F1>::Result Result;
487  typedef typename internal::Function<F1>::ArgumentTuple ArgumentTuple;
488 
489  explicit ActionAdaptor(const Action<F2>& from) : impl_(from.impl_) {}
490 
491  virtual Result Perform(const ArgumentTuple& args) {
492  return impl_->Perform(args);
493  }
494 
495  private:
497 
499 };
500 
501 // Helper struct to specialize ReturnAction to execute a move instead of a copy
502 // on return. Useful for move-only types, but could be used on any type.
503 template <typename T>
505  explicit ByMoveWrapper(T value) : payload(internal::move(value)) {}
507 };
508 
509 // Implements the polymorphic Return(x) action, which can be used in
510 // any function that returns the type of x, regardless of the argument
511 // types.
512 //
513 // Note: The value passed into Return must be converted into
514 // Function<F>::Result when this action is cast to Action<F> rather than
515 // when that action is performed. This is important in scenarios like
516 //
517 // MOCK_METHOD1(Method, T(U));
518 // ...
519 // {
520 // Foo foo;
521 // X x(&foo);
522 // EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
523 // }
524 //
525 // In the example above the variable x holds reference to foo which leaves
526 // scope and gets destroyed. If copying X just copies a reference to foo,
527 // that copy will be left with a hanging reference. If conversion to T
528 // makes a copy of foo, the above code is safe. To support that scenario, we
529 // need to make sure that the type conversion happens inside the EXPECT_CALL
530 // statement, and conversion of the result of Return to Action<T(U)> is a
531 // good place for that.
532 //
533 template <typename R>
535  public:
536  // Constructs a ReturnAction object from the value to be returned.
537  // 'value' is passed by value instead of by const reference in order
538  // to allow Return("string literal") to compile.
539  explicit ReturnAction(R value) : value_(new R(internal::move(value))) {}
540 
541  // This template type conversion operator allows Return(x) to be
542  // used in ANY function that returns x's type.
543  template <typename F>
544  operator Action<F>() const {
545  // Assert statement belongs here because this is the best place to verify
546  // conditions on F. It produces the clearest error messages
547  // in most compilers.
548  // Impl really belongs in this scope as a local class but can't
549  // because MSVC produces duplicate symbols in different translation units
550  // in this case. Until MS fixes that bug we put Impl into the class scope
551  // and put the typedef both here (for use in assert statement) and
552  // in the Impl class. But both definitions must be the same.
553  typedef typename Function<F>::Result Result;
556  use_ReturnRef_instead_of_Return_to_return_a_reference);
557  return Action<F>(new Impl<R, F>(value_));
558  }
559 
560  private:
561  // Implements the Return(x) action for a particular function type F.
562  template <typename R_, typename F>
563  class Impl : public ActionInterface<F> {
564  public:
565  typedef typename Function<F>::Result Result;
567 
568  // The implicit cast is necessary when Result has more than one
569  // single-argument constructor (e.g. Result is std::vector<int>) and R
570  // has a type conversion operator template. In that case, value_(value)
571  // won't compile as the compiler doesn't known which constructor of
572  // Result to call. ImplicitCast_ forces the compiler to convert R to
573  // Result without considering explicit constructors, thus resolving the
574  // ambiguity. value_ is then initialized using its copy constructor.
575  explicit Impl(const linked_ptr<R>& value)
576  : value_before_cast_(*value),
578 
579  virtual Result Perform(const ArgumentTuple&) { return value_; }
580 
581  private:
583  Result_cannot_be_a_reference_type);
584  // We save the value before casting just in case it is being cast to a
585  // wrapper type.
588 
590  };
591 
592  // Partially specialize for ByMoveWrapper. This version of ReturnAction will
593  // move its contents instead.
594  template <typename R_, typename F>
595  class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> {
596  public:
597  typedef typename Function<F>::Result Result;
599 
600  explicit Impl(const linked_ptr<R>& wrapper)
601  : performed_(false), wrapper_(wrapper) {}
602 
603  virtual Result Perform(const ArgumentTuple&) {
604  GTEST_CHECK_(!performed_)
605  << "A ByMove() action should only be performed once.";
606  performed_ = true;
607  return internal::move(wrapper_->payload);
608  }
609 
610  private:
613 
615  };
616 
618 
620 };
621 
622 // Implements the ReturnNull() action.
624  public:
625  // Allows ReturnNull() to be used in any pointer-returning function. In C++11
626  // this is enforced by returning nullptr, and in non-C++11 by asserting a
627  // pointer type on compile time.
628  template <typename Result, typename ArgumentTuple>
629  static Result Perform(const ArgumentTuple&) {
630 #if GTEST_LANG_CXX11
631  return nullptr;
632 #else
634  ReturnNull_can_be_used_to_return_a_pointer_only);
635  return NULL;
636 #endif // GTEST_LANG_CXX11
637  }
638 };
639 
640 // Implements the Return() action.
642  public:
643  // Allows Return() to be used in any void-returning function.
644  template <typename Result, typename ArgumentTuple>
645  static void Perform(const ArgumentTuple&) {
647  }
648 };
649 
650 // Implements the polymorphic ReturnRef(x) action, which can be used
651 // in any function that returns a reference to the type of x,
652 // regardless of the argument types.
653 template <typename T>
655  public:
656  // Constructs a ReturnRefAction object from the reference to be returned.
657  explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT
658 
659  // This template type conversion operator allows ReturnRef(x) to be
660  // used in ANY function that returns a reference to x's type.
661  template <typename F>
662  operator Action<F>() const {
663  typedef typename Function<F>::Result Result;
664  // Asserts that the function return type is a reference. This
665  // catches the user error of using ReturnRef(x) when Return(x)
666  // should be used, and generates some helpful error message.
668  use_Return_instead_of_ReturnRef_to_return_a_value);
669  return Action<F>(new Impl<F>(ref_));
670  }
671 
672  private:
673  // Implements the ReturnRef(x) action for a particular function type F.
674  template <typename F>
675  class Impl : public ActionInterface<F> {
676  public:
677  typedef typename Function<F>::Result Result;
679 
680  explicit Impl(T& ref) : ref_(ref) {} // NOLINT
681 
682  virtual Result Perform(const ArgumentTuple&) {
683  return ref_;
684  }
685 
686  private:
687  T& ref_;
688 
690  };
691 
692  T& ref_;
693 
695 };
696 
697 // Implements the polymorphic ReturnRefOfCopy(x) action, which can be
698 // used in any function that returns a reference to the type of x,
699 // regardless of the argument types.
700 template <typename T>
702  public:
703  // Constructs a ReturnRefOfCopyAction object from the reference to
704  // be returned.
705  explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT
706 
707  // This template type conversion operator allows ReturnRefOfCopy(x) to be
708  // used in ANY function that returns a reference to x's type.
709  template <typename F>
710  operator Action<F>() const {
711  typedef typename Function<F>::Result Result;
712  // Asserts that the function return type is a reference. This
713  // catches the user error of using ReturnRefOfCopy(x) when Return(x)
714  // should be used, and generates some helpful error message.
717  use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
718  return Action<F>(new Impl<F>(value_));
719  }
720 
721  private:
722  // Implements the ReturnRefOfCopy(x) action for a particular function type F.
723  template <typename F>
724  class Impl : public ActionInterface<F> {
725  public:
726  typedef typename Function<F>::Result Result;
728 
729  explicit Impl(const T& value) : value_(value) {} // NOLINT
730 
731  virtual Result Perform(const ArgumentTuple&) {
732  return value_;
733  }
734 
735  private:
737 
739  };
740 
741  const T value_;
742 
744 };
745 
746 // Implements the polymorphic DoDefault() action.
748  public:
749  // This template type conversion operator allows DoDefault() to be
750  // used in any function.
751  template <typename F>
752  operator Action<F>() const { return Action<F>(NULL); }
753 };
754 
755 // Implements the Assign action to set a given pointer referent to a
756 // particular value.
757 template <typename T1, typename T2>
759  public:
760  AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
761 
762  template <typename Result, typename ArgumentTuple>
763  void Perform(const ArgumentTuple& /* args */) const {
764  *ptr_ = value_;
765  }
766 
767  private:
768  T1* const ptr_;
769  const T2 value_;
770 
772 };
773 
774 #if !GTEST_OS_WINDOWS_MOBILE
775 
776 // Implements the SetErrnoAndReturn action to simulate return from
777 // various system calls and libc functions.
778 template <typename T>
780  public:
781  SetErrnoAndReturnAction(int errno_value, T result)
782  : errno_(errno_value),
783  result_(result) {}
784  template <typename Result, typename ArgumentTuple>
785  Result Perform(const ArgumentTuple& /* args */) const {
786  errno = errno_;
787  return result_;
788  }
789 
790  private:
791  const int errno_;
792  const T result_;
793 
795 };
796 
797 #endif // !GTEST_OS_WINDOWS_MOBILE
798 
799 // Implements the SetArgumentPointee<N>(x) action for any function
800 // whose N-th argument (0-based) is a pointer to x's type. The
801 // template parameter kIsProto is true iff type A is ProtocolMessage,
802 // proto2::Message, or a sub-class of those.
803 template <size_t N, typename A, bool kIsProto>
805  public:
806  // Constructs an action that sets the variable pointed to by the
807  // N-th function argument to 'value'.
808  explicit SetArgumentPointeeAction(const A& value) : value_(value) {}
809 
810  template <typename Result, typename ArgumentTuple>
811  void Perform(const ArgumentTuple& args) const {
813  *::testing::get<N>(args) = value_;
814  }
815 
816  private:
817  const A value_;
818 
820 };
821 
822 template <size_t N, typename Proto>
824  public:
825  // Constructs an action that sets the variable pointed to by the
826  // N-th function argument to 'proto'. Both ProtocolMessage and
827  // proto2::Message have the CopyFrom() method, so the same
828  // implementation works for both.
829  explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) {
830  proto_->CopyFrom(proto);
831  }
832 
833  template <typename Result, typename ArgumentTuple>
834  void Perform(const ArgumentTuple& args) const {
836  ::testing::get<N>(args)->CopyFrom(*proto_);
837  }
838 
839  private:
841 
843 };
844 
845 // Implements the InvokeWithoutArgs(f) action. The template argument
846 // FunctionImpl is the implementation type of f, which can be either a
847 // function pointer or a functor. InvokeWithoutArgs(f) can be used as an
848 // Action<F> as long as f's type is compatible with F (i.e. f can be
849 // assigned to a tr1::function<F>).
850 template <typename FunctionImpl>
852  public:
853  // The c'tor makes a copy of function_impl (either a function
854  // pointer or a functor).
855  explicit InvokeWithoutArgsAction(FunctionImpl function_impl)
856  : function_impl_(function_impl) {}
857 
858  // Allows InvokeWithoutArgs(f) to be used as any action whose type is
859  // compatible with f.
860  template <typename Result, typename ArgumentTuple>
861  Result Perform(const ArgumentTuple&) { return function_impl_(); }
862 
863  private:
864  FunctionImpl function_impl_;
865 
867 };
868 
869 // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
870 template <class Class, typename MethodPtr>
872  public:
873  InvokeMethodWithoutArgsAction(Class* obj_ptr, MethodPtr method_ptr)
874  : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {}
875 
876  template <typename Result, typename ArgumentTuple>
877  Result Perform(const ArgumentTuple&) const {
878  return (obj_ptr_->*method_ptr_)();
879  }
880 
881  private:
882  Class* const obj_ptr_;
883  const MethodPtr method_ptr_;
884 
886 };
887 
888 // Implements the IgnoreResult(action) action.
889 template <typename A>
891  public:
892  explicit IgnoreResultAction(const A& action) : action_(action) {}
893 
894  template <typename F>
895  operator Action<F>() const {
896  // Assert statement belongs here because this is the best place to verify
897  // conditions on F. It produces the clearest error messages
898  // in most compilers.
899  // Impl really belongs in this scope as a local class but can't
900  // because MSVC produces duplicate symbols in different translation units
901  // in this case. Until MS fixes that bug we put Impl into the class scope
902  // and put the typedef both here (for use in assert statement) and
903  // in the Impl class. But both definitions must be the same.
904  typedef typename internal::Function<F>::Result Result;
905 
906  // Asserts at compile time that F returns void.
908 
909  return Action<F>(new Impl<F>(action_));
910  }
911 
912  private:
913  template <typename F>
914  class Impl : public ActionInterface<F> {
915  public:
916  typedef typename internal::Function<F>::Result Result;
917  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
918 
919  explicit Impl(const A& action) : action_(action) {}
920 
921  virtual void Perform(const ArgumentTuple& args) {
922  // Performs the action and ignores its result.
923  action_.Perform(args);
924  }
925 
926  private:
927  // Type OriginalFunction is the same as F except that its return
928  // type is IgnoredValue.
929  typedef typename internal::Function<F>::MakeResultIgnoredValue
931 
933 
935  };
936 
937  const A action_;
938 
940 };
941 
942 // A ReferenceWrapper<T> object represents a reference to type T,
943 // which can be either const or not. It can be explicitly converted
944 // from, and implicitly converted to, a T&. Unlike a reference,
945 // ReferenceWrapper<T> can be copied and can survive template type
946 // inference. This is used to support by-reference arguments in the
947 // InvokeArgument<N>(...) action. The idea was from "reference
948 // wrappers" in tr1, which we don't have in our source tree yet.
949 template <typename T>
951  public:
952  // Constructs a ReferenceWrapper<T> object from a T&.
953  explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {} // NOLINT
954 
955  // Allows a ReferenceWrapper<T> object to be implicitly converted to
956  // a T&.
957  operator T&() const { return *pointer_; }
958  private:
960 };
961 
962 // Allows the expression ByRef(x) to be printed as a reference to x.
963 template <typename T>
964 void PrintTo(const ReferenceWrapper<T>& ref, ::std::ostream* os) {
965  T& value = ref;
966  UniversalPrinter<T&>::Print(value, os);
967 }
968 
969 // Does two actions sequentially. Used for implementing the DoAll(a1,
970 // a2, ...) action.
971 template <typename Action1, typename Action2>
973  public:
974  DoBothAction(Action1 action1, Action2 action2)
975  : action1_(action1), action2_(action2) {}
976 
977  // This template type conversion operator allows DoAll(a1, ..., a_n)
978  // to be used in ANY function of compatible type.
979  template <typename F>
980  operator Action<F>() const {
981  return Action<F>(new Impl<F>(action1_, action2_));
982  }
983 
984  private:
985  // Implements the DoAll(...) action for a particular function type F.
986  template <typename F>
987  class Impl : public ActionInterface<F> {
988  public:
989  typedef typename Function<F>::Result Result;
992 
993  Impl(const Action<VoidResult>& action1, const Action<F>& action2)
994  : action1_(action1), action2_(action2) {}
995 
996  virtual Result Perform(const ArgumentTuple& args) {
997  action1_.Perform(args);
998  return action2_.Perform(args);
999  }
1000 
1001  private:
1004 
1006  };
1007 
1008  Action1 action1_;
1009  Action2 action2_;
1010 
1012 };
1013 
1014 } // namespace internal
1015 
1016 // An Unused object can be implicitly constructed from ANY value.
1017 // This is handy when defining actions that ignore some or all of the
1018 // mock function arguments. For example, given
1019 //
1020 // MOCK_METHOD3(Foo, double(const string& label, double x, double y));
1021 // MOCK_METHOD3(Bar, double(int index, double x, double y));
1022 //
1023 // instead of
1024 //
1025 // double DistanceToOriginWithLabel(const string& label, double x, double y) {
1026 // return sqrt(x*x + y*y);
1027 // }
1028 // double DistanceToOriginWithIndex(int index, double x, double y) {
1029 // return sqrt(x*x + y*y);
1030 // }
1031 // ...
1032 // EXEPCT_CALL(mock, Foo("abc", _, _))
1033 // .WillOnce(Invoke(DistanceToOriginWithLabel));
1034 // EXEPCT_CALL(mock, Bar(5, _, _))
1035 // .WillOnce(Invoke(DistanceToOriginWithIndex));
1036 //
1037 // you could write
1038 //
1039 // // We can declare any uninteresting argument as Unused.
1040 // double DistanceToOrigin(Unused, double x, double y) {
1041 // return sqrt(x*x + y*y);
1042 // }
1043 // ...
1044 // EXEPCT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
1045 // EXEPCT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
1047 
1048 // This constructor allows us to turn an Action<From> object into an
1049 // Action<To>, as long as To's arguments can be implicitly converted
1050 // to From's and From's return type cann be implicitly converted to
1051 // To's.
1052 template <typename To>
1053 template <typename From>
1055  : impl_(new internal::ActionAdaptor<To, From>(from)) {}
1056 
1057 // Creates an action that returns 'value'. 'value' is passed by value
1058 // instead of const reference - otherwise Return("string literal")
1059 // will trigger a compiler error about using array as initializer.
1060 template <typename R>
1063 }
1064 
1065 // Creates an action that returns NULL.
1068 }
1069 
1070 // Creates an action that returns from a void function.
1073 }
1074 
1075 // Creates an action that returns the reference to a variable.
1076 template <typename R>
1079 }
1080 
1081 // Creates an action that returns the reference to a copy of the
1082 // argument. The copy is created when the action is constructed and
1083 // lives as long as the action.
1084 template <typename R>
1087 }
1088 
1089 // Modifies the parent action (a Return() action) to perform a move of the
1090 // argument instead of a copy.
1091 // Return(ByMove()) actions can only be executed once and will assert this
1092 // invariant.
1093 template <typename R>
1096 }
1097 
1098 // Creates an action that does the default action for the give mock function.
1100  return internal::DoDefaultAction();
1101 }
1102 
1103 // Creates an action that sets the variable pointed by the N-th
1104 // (0-based) function argument to 'value'.
1105 template <size_t N, typename T>
1106 PolymorphicAction<
1107  internal::SetArgumentPointeeAction<
1109 SetArgPointee(const T& x) {
1112 }
1113 
1114 #if !((GTEST_GCC_VER_ && GTEST_GCC_VER_ < 40000) || GTEST_OS_SYMBIAN)
1115 // This overload allows SetArgPointee() to accept a string literal.
1116 // GCC prior to the version 4.0 and Symbian C++ compiler cannot distinguish
1117 // this overload from the templated version and emit a compile error.
1118 template <size_t N>
1119 PolymorphicAction<
1120  internal::SetArgumentPointeeAction<N, const char*, false> >
1121 SetArgPointee(const char* p) {
1123  N, const char*, false>(p));
1124 }
1125 
1126 template <size_t N>
1127 PolymorphicAction<
1128  internal::SetArgumentPointeeAction<N, const wchar_t*, false> >
1129 SetArgPointee(const wchar_t* p) {
1131  N, const wchar_t*, false>(p));
1132 }
1133 #endif
1134 
1135 // The following version is DEPRECATED.
1136 template <size_t N, typename T>
1137 PolymorphicAction<
1138  internal::SetArgumentPointeeAction<
1143 }
1144 
1145 // Creates an action that sets a pointer referent to a given value.
1146 template <typename T1, typename T2>
1149 }
1150 
1151 #if !GTEST_OS_WINDOWS_MOBILE
1152 
1153 // Creates an action that sets errno and returns the appropriate error.
1154 template <typename T>
1155 PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
1156 SetErrnoAndReturn(int errval, T result) {
1157  return MakePolymorphicAction(
1158  internal::SetErrnoAndReturnAction<T>(errval, result));
1159 }
1160 
1161 #endif // !GTEST_OS_WINDOWS_MOBILE
1162 
1163 // Various overloads for InvokeWithoutArgs().
1164 
1165 // Creates an action that invokes 'function_impl' with no argument.
1166 template <typename FunctionImpl>
1167 PolymorphicAction<internal::InvokeWithoutArgsAction<FunctionImpl> >
1168 InvokeWithoutArgs(FunctionImpl function_impl) {
1169  return MakePolymorphicAction(
1171 }
1172 
1173 // Creates an action that invokes the given method on the given object
1174 // with no argument.
1175 template <class Class, typename MethodPtr>
1176 PolymorphicAction<internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> >
1177 InvokeWithoutArgs(Class* obj_ptr, MethodPtr method_ptr) {
1178  return MakePolymorphicAction(
1180  obj_ptr, method_ptr));
1181 }
1182 
1183 // Creates an action that performs an_action and throws away its
1184 // result. In other words, it changes the return type of an_action to
1185 // void. an_action MUST NOT return void, or the code won't compile.
1186 template <typename A>
1188  return internal::IgnoreResultAction<A>(an_action);
1189 }
1190 
1191 // Creates a reference wrapper for the given L-value. If necessary,
1192 // you can explicitly specify the type of the reference. For example,
1193 // suppose 'derived' is an object of type Derived, ByRef(derived)
1194 // would wrap a Derived&. If you want to wrap a const Base& instead,
1195 // where Base is a base class of Derived, just write:
1196 //
1197 // ByRef<const Base>(derived)
1198 template <typename T>
1199 inline internal::ReferenceWrapper<T> ByRef(T& l_value) { // NOLINT
1200  return internal::ReferenceWrapper<T>(l_value);
1201 }
1202 
1203 } // namespace testing
1204 
1205 #endif // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_