Analysis Software
Documentation for
sPHENIX
simulation software
Home page
Related Pages
Modules
Namespaces
Classes
Files
Examples
External Links
File List
File Members
All
Classes
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Enumerator
Friends
Macros
Groups
Pages
py4jts.f
Go to the documentation of this file.
Or view
the newest version in sPHENIX GitHub for file py4jts.f
1
2
C*********************************************************************
3
4
C...PY4JTS
5
C...Auxiliary to PY4JET, to set up chosen configuration.
6
7
SUBROUTINE
py4jts
(IA1,IA2,IA3,IA4,IA5,QMAX)
8
9
C...Double precision and integer declarations.
10
IMPLICIT
DOUBLE PRECISION
(a-
h
, o-
z
)
11
IMPLICIT
INTEGER
(
i
-
n
)
12
INTEGER
pyk
,
pychge
,
pycomp
13
C...Commonblocks.
14
common/
pyjets
/
n
,
npad
,
k
(4000,5),
p
(4000,5),
v
(4000,5)
15
SAVE
/
pyjets
/
16
17
C...Reset info.
18
DO
110
i
=
n
+1,
n
+6
19
DO
100
j
=1,5
20
k
(
i
,
j
)=0
21
v
(
i
,
j
)=
v
(ia2,
j
)
22
100
CONTINUE
23
k
(
i
,1)=16
24
110
CONTINUE
25
26
C...First case: when both original partons radiate.
27
C...N+1 -> (IA1=N+3) + (IA2=N+4), N+2 -> (IA3=N+5) + (IA4=N+6).
28
IF
(ia1.NE.0)
THEN
29
30
C...Set up flavour and history pointers for new partons.
31
k
(
n
+1,2)=
k
(ia1,2)
32
k
(
n
+2,2)=
k
(ia3,2)
33
k
(
n
+3,2)=
k
(ia1,2)
34
k
(
n
+4,2)=
k
(ia2,2)
35
k
(
n
+5,2)=
k
(ia3,2)
36
k
(
n
+6,2)=
k
(ia4,2)
37
k
(
n
+1,3)=ia1
38
k
(
n
+1,4)=
n
+3
39
k
(
n
+1,5)=
n
+4
40
k
(
n
+2,3)=ia3
41
k
(
n
+2,4)=
n
+5
42
k
(
n
+2,5)=
n
+6
43
k
(
n
+3,3)=
n
+1
44
k
(
n
+4,3)=
n
+1
45
k
(
n
+5,3)=
n
+2
46
k
(
n
+6,3)=
n
+2
47
48
C...Set up momenta for new partons.
49
DO
120
j
=1,5
50
p
(
n
+1,
j
)=
p
(ia1,
j
)+
p
(ia2,
j
)
51
p
(
n
+2,
j
)=
p
(ia3,
j
)+
p
(ia4,
j
)
52
p
(
n
+3,
j
)=
p
(ia1,
j
)
53
p
(
n
+4,
j
)=
p
(ia2,
j
)
54
p
(
n
+5,
j
)=
p
(ia3,
j
)
55
p
(
n
+6,
j
)=
p
(ia4,
j
)
56
120
CONTINUE
57
p
(
n
+1,5)=sqrt(
max
(0d0,
p
(
n
+1,4)**2-
p
(
n
+1,1)**2-
p
(
n
+1,2)**2-
58
&
p
(
n
+1,3)**2))
59
p
(
n
+2,5)=sqrt(
max
(0d0,
p
(
n
+2,4)**2-
p
(
n
+2,1)**2-
p
(
n
+2,2)**2-
60
&
p
(
n
+2,3)**2))
61
qmax=min(
p
(
n
+1,5),
p
(
n
+2,5))
62
63
C...Second case: q radiates twice.
64
C...N+1 -> (IA2=N+4) + N+3, N+3 -> (IA3=N+5) + (IA4=N+6),
65
C...IA5=N+2 does not radiate.
66
ELSEIF
(
k
(ia2,2).EQ.21)
THEN
67
68
C...Set up flavour and history pointers for new partons.
69
k
(
n
+1,2)=
k
(ia3,2)
70
k
(
n
+2,2)=
k
(ia5,2)
71
k
(
n
+3,2)=
k
(ia3,2)
72
k
(
n
+4,2)=
k
(ia2,2)
73
k
(
n
+5,2)=
k
(ia3,2)
74
k
(
n
+6,2)=
k
(ia4,2)
75
k
(
n
+1,3)=ia3
76
k
(
n
+1,4)=
n
+3
77
k
(
n
+1,5)=
n
+4
78
k
(
n
+2,3)=ia5
79
k
(
n
+3,3)=
n
+1
80
k
(
n
+3,4)=
n
+5
81
k
(
n
+3,5)=
n
+6
82
k
(
n
+4,3)=
n
+1
83
k
(
n
+5,3)=
n
+3
84
k
(
n
+6,3)=
n
+3
85
86
C...Set up momenta for new partons.
87
DO
130
j
=1,5
88
p
(
n
+1,
j
)=
p
(ia2,
j
)+
p
(ia3,
j
)+
p
(ia4,
j
)
89
p
(
n
+2,
j
)=
p
(ia5,
j
)
90
p
(
n
+3,
j
)=
p
(ia3,
j
)+
p
(ia4,
j
)
91
p
(
n
+4,
j
)=
p
(ia2,
j
)
92
p
(
n
+5,
j
)=
p
(ia3,
j
)
93
p
(
n
+6,
j
)=
p
(ia4,
j
)
94
130
CONTINUE
95
p
(
n
+1,5)=sqrt(
max
(0d0,
p
(
n
+1,4)**2-
p
(
n
+1,1)**2-
p
(
n
+1,2)**2-
96
&
p
(
n
+1,3)**2))
97
p
(
n
+3,5)=sqrt(
max
(0d0,
p
(
n
+3,4)**2-
p
(
n
+3,1)**2-
p
(
n
+3,2)**2-
98
&
p
(
n
+3,3)**2))
99
qmax=
p
(
n
+3,5)
100
101
C...Third case: q radiates g, g branches.
102
C...N+1 -> (IA2=N+3) + N+4, N+4 -> (IA3=N+5) + (IA4=N+6),
103
C...IA5=N+2 does not radiate.
104
ELSE
105
106
C...Set up flavour and history pointers for new partons.
107
k
(
n
+1,2)=
k
(ia2,2)
108
k
(
n
+2,2)=
k
(ia5,2)
109
k
(
n
+3,2)=
k
(ia2,2)
110
k
(
n
+4,2)=21
111
k
(
n
+5,2)=
k
(ia3,2)
112
k
(
n
+6,2)=
k
(ia4,2)
113
k
(
n
+1,3)=ia2
114
k
(
n
+1,4)=
n
+3
115
k
(
n
+1,5)=
n
+4
116
k
(
n
+2,3)=ia5
117
k
(
n
+3,3)=
n
+1
118
k
(
n
+4,3)=
n
+1
119
k
(
n
+4,4)=
n
+5
120
k
(
n
+4,5)=
n
+6
121
k
(
n
+5,3)=
n
+4
122
k
(
n
+6,3)=
n
+4
123
124
C...Set up momenta for new partons.
125
DO
140
j
=1,5
126
p
(
n
+1,
j
)=
p
(ia2,
j
)+
p
(ia3,
j
)+
p
(ia4,
j
)
127
p
(
n
+2,
j
)=
p
(ia5,
j
)
128
p
(
n
+3,
j
)=
p
(ia2,
j
)
129
p
(
n
+4,
j
)=
p
(ia3,
j
)+
p
(ia4,
j
)
130
p
(
n
+5,
j
)=
p
(ia3,
j
)
131
p
(
n
+6,
j
)=
p
(ia4,
j
)
132
140
CONTINUE
133
p
(
n
+1,5)=sqrt(
max
(0d0,
p
(
n
+1,4)**2-
p
(
n
+1,1)**2-
p
(
n
+1,2)**2-
134
&
p
(
n
+1,3)**2))
135
p
(
n
+4,5)=sqrt(
max
(0d0,
p
(
n
+4,4)**2-
p
(
n
+4,1)**2-
p
(
n
+4,2)**2-
136
&
p
(
n
+4,3)**2))
137
qmax=
p
(
n
+4,5)
138
139
ENDIF
140
n
=
n
+6
141
142
RETURN
143
END
pythia6
blob
master
pythiaeRHIC
pythia
py4jts.f
Built by
Jin Huang
. updated:
Sat Feb 17 2024 22:18:40
using
1.8.2 with
sPHENIX GitHub integration