Analysis Software
Documentation for sPHENIX simulation software
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
gtest-internal.h
Go to the documentation of this file. Or view the newest version in sPHENIX GitHub for file gtest-internal.h
1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee)
31 //
32 // The Google C++ Testing Framework (Google Test)
33 //
34 // This header file declares functions and macros used internally by
35 // Google Test. They are subject to change without notice.
36 
37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
39 
41 
42 #if GTEST_OS_LINUX
43 # include <stdlib.h>
44 # include <sys/types.h>
45 # include <sys/wait.h>
46 # include <unistd.h>
47 #endif // GTEST_OS_LINUX
48 
49 #if GTEST_HAS_EXCEPTIONS
50 # include <stdexcept>
51 #endif
52 
53 #include <ctype.h>
54 #include <float.h>
55 #include <string.h>
56 #include <iomanip>
57 #include <limits>
58 #include <map>
59 #include <set>
60 #include <string>
61 #include <vector>
62 
63 #include "gtest/gtest-message.h"
67 
68 // Due to C++ preprocessor weirdness, we need double indirection to
69 // concatenate two tokens when one of them is __LINE__. Writing
70 //
71 // foo ## __LINE__
72 //
73 // will result in the token foo__LINE__, instead of foo followed by
74 // the current line number. For more details, see
75 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
76 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
77 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
78 
79 class ProtocolMessage;
80 namespace proto2 { class Message; }
81 
82 namespace testing {
83 
84 // Forward declarations.
85 
86 class AssertionResult; // Result of an assertion.
87 class Message; // Represents a failure message.
88 class Test; // Represents a test.
89 class TestInfo; // Information about a test.
90 class TestPartResult; // Result of a test part.
91 class UnitTest; // A collection of test cases.
92 
93 template <typename T>
95 
96 namespace internal {
97 
98 struct TraceInfo; // Information about a trace point.
99 class ScopedTrace; // Implements scoped trace.
100 class TestInfoImpl; // Opaque implementation of TestInfo
101 class UnitTestImpl; // Opaque implementation of UnitTest
102 
103 // The text used in failure messages to indicate the start of the
104 // stack trace.
105 GTEST_API_ extern const char kStackTraceMarker[];
106 
107 // Two overloaded helpers for checking at compile time whether an
108 // expression is a null pointer literal (i.e. NULL or any 0-valued
109 // compile-time integral constant). Their return values have
110 // different sizes, so we can use sizeof() to test which version is
111 // picked by the compiler. These helpers have no implementations, as
112 // we only need their signatures.
113 //
114 // Given IsNullLiteralHelper(x), the compiler will pick the first
115 // version if x can be implicitly converted to Secret*, and pick the
116 // second version otherwise. Since Secret is a secret and incomplete
117 // type, the only expression a user can write that has type Secret* is
118 // a null pointer literal. Therefore, we know that x is a null
119 // pointer literal if and only if the first version is picked by the
120 // compiler.
121 char IsNullLiteralHelper(Secret* p);
122 char (&IsNullLiteralHelper(...))[2]; // NOLINT
123 
124 // A compile-time bool constant that is true if and only if x is a
125 // null pointer literal (i.e. NULL or any 0-valued compile-time
126 // integral constant).
127 #ifdef GTEST_ELLIPSIS_NEEDS_POD_
128 // We lose support for NULL detection where the compiler doesn't like
129 // passing non-POD classes through ellipsis (...).
130 # define GTEST_IS_NULL_LITERAL_(x) false
131 #else
132 # define GTEST_IS_NULL_LITERAL_(x) \
133  (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
134 #endif // GTEST_ELLIPSIS_NEEDS_POD_
135 
136 // Appends the user-supplied message to the Google-Test-generated message.
138  const std::string& gtest_msg, const Message& user_msg);
139 
140 #if GTEST_HAS_EXCEPTIONS
141 
142 // This exception is thrown by (and only by) a failed Google Test
143 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
144 // are enabled). We derive it from std::runtime_error, which is for
145 // errors presumably detectable only at run time. Since
146 // std::runtime_error inherits from std::exception, many testing
147 // frameworks know how to extract and print the message inside it.
148 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
149  public:
150  explicit GoogleTestFailureException(const TestPartResult& failure);
151 };
152 
153 #endif // GTEST_HAS_EXCEPTIONS
154 
155 // A helper class for creating scoped traces in user programs.
157  public:
158  // The c'tor pushes the given source file location and message onto
159  // a trace stack maintained by Google Test.
160  ScopedTrace(const char* file, int line, const Message& message);
161 
162  // The d'tor pops the info pushed by the c'tor.
163  //
164  // Note that the d'tor is not virtual in order to be efficient.
165  // Don't inherit from ScopedTrace!
166  ~ScopedTrace();
167 
168  private:
170 } GTEST_ATTRIBUTE_UNUSED_; // A ScopedTrace object does its job in its
171  // c'tor and d'tor. Therefore it doesn't
172  // need to be used otherwise.
173 
174 namespace edit_distance {
175 // Returns the optimal edits to go from 'left' to 'right'.
176 // All edits cost the same, with replace having lower priority than
177 // add/remove.
178 // Simple implementation of the Wagner–Fischer algorithm.
179 // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
181 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
182  const std::vector<size_t>& left, const std::vector<size_t>& right);
183 
184 // Same as above, but the input is represented as strings.
185 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
186  const std::vector<std::string>& left,
187  const std::vector<std::string>& right);
188 
189 // Create a diff of the input strings in Unified diff format.
190 GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
191  const std::vector<std::string>& right,
192  size_t context = 2);
193 
194 } // namespace edit_distance
195 
196 // Calculate the diff between 'left' and 'right' and return it in unified diff
197 // format.
198 // If not null, stores in 'total_line_count' the total number of lines found
199 // in left + right.
201  const std::string& right,
202  size_t* total_line_count);
203 
204 // Constructs and returns the message for an equality assertion
205 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
206 //
207 // The first four parameters are the expressions used in the assertion
208 // and their values, as strings. For example, for ASSERT_EQ(foo, bar)
209 // where foo is 5 and bar is 6, we have:
210 //
211 // expected_expression: "foo"
212 // actual_expression: "bar"
213 // expected_value: "5"
214 // actual_value: "6"
215 //
216 // The ignoring_case parameter is true iff the assertion is a
217 // *_STRCASEEQ*. When it's true, the string " (ignoring case)" will
218 // be inserted into the message.
219 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
220  const char* actual_expression,
221  const std::string& expected_value,
222  const std::string& actual_value,
223  bool ignoring_case);
224 
225 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
227  const AssertionResult& assertion_result,
228  const char* expression_text,
229  const char* actual_predicate_value,
230  const char* expected_predicate_value);
231 
232 // This template class represents an IEEE floating-point number
233 // (either single-precision or double-precision, depending on the
234 // template parameters).
235 //
236 // The purpose of this class is to do more sophisticated number
237 // comparison. (Due to round-off error, etc, it's very unlikely that
238 // two floating-points will be equal exactly. Hence a naive
239 // comparison by the == operation often doesn't work.)
240 //
241 // Format of IEEE floating-point:
242 //
243 // The most-significant bit being the leftmost, an IEEE
244 // floating-point looks like
245 //
246 // sign_bit exponent_bits fraction_bits
247 //
248 // Here, sign_bit is a single bit that designates the sign of the
249 // number.
250 //
251 // For float, there are 8 exponent bits and 23 fraction bits.
252 //
253 // For double, there are 11 exponent bits and 52 fraction bits.
254 //
255 // More details can be found at
256 // http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
257 //
258 // Template parameter:
259 //
260 // RawType: the raw floating-point type (either float or double)
261 template <typename RawType>
263  public:
264  // Defines the unsigned integer type that has the same size as the
265  // floating point number.
267 
268  // Constants.
269 
270  // # of bits in a number.
271  static const size_t kBitCount = 8*sizeof(RawType);
272 
273  // # of fraction bits in a number.
274  static const size_t kFractionBitCount =
275  std::numeric_limits<RawType>::digits - 1;
276 
277  // # of exponent bits in a number.
278  static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
279 
280  // The mask for the sign bit.
281  static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
282 
283  // The mask for the fraction bits.
284  static const Bits kFractionBitMask =
285  ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
286 
287  // The mask for the exponent bits.
289 
290  // How many ULP's (Units in the Last Place) we want to tolerate when
291  // comparing two numbers. The larger the value, the more error we
292  // allow. A 0 value means that two numbers must be exactly the same
293  // to be considered equal.
294  //
295  // The maximum error of a single floating-point operation is 0.5
296  // units in the last place. On Intel CPU's, all floating-point
297  // calculations are done with 80-bit precision, while double has 64
298  // bits. Therefore, 4 should be enough for ordinary use.
299  //
300  // See the following article for more details on ULP:
301  // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
302  static const size_t kMaxUlps = 4;
303 
304  // Constructs a FloatingPoint from a raw floating-point number.
305  //
306  // On an Intel CPU, passing a non-normalized NAN (Not a Number)
307  // around may change its bits, although the new value is guaranteed
308  // to be also a NAN. Therefore, don't expect this constructor to
309  // preserve the bits in x when x is a NAN.
310  explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
311 
312  // Static methods
313 
314  // Reinterprets a bit pattern as a floating-point number.
315  //
316  // This function is needed to test the AlmostEquals() method.
317  static RawType ReinterpretBits(const Bits bits) {
318  FloatingPoint fp(0);
319  fp.u_.bits_ = bits;
320  return fp.u_.value_;
321  }
322 
323  // Returns the floating-point number that represent positive infinity.
324  static RawType Infinity() {
326  }
327 
328  // Returns the maximum representable finite floating-point number.
329  static RawType Max();
330 
331  // Non-static methods
332 
333  // Returns the bits that represents this number.
334  const Bits &bits() const { return u_.bits_; }
335 
336  // Returns the exponent bits of this number.
338 
339  // Returns the fraction bits of this number.
341 
342  // Returns the sign bit of this number.
343  Bits sign_bit() const { return kSignBitMask & u_.bits_; }
344 
345  // Returns true iff this is NAN (not a number).
346  bool is_nan() const {
347  // It's a NAN if the exponent bits are all ones and the fraction
348  // bits are not entirely zeros.
349  return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
350  }
351 
352  // Returns true iff this number is at most kMaxUlps ULP's away from
353  // rhs. In particular, this function:
354  //
355  // - returns false if either number is (or both are) NAN.
356  // - treats really large numbers as almost equal to infinity.
357  // - thinks +0.0 and -0.0 are 0 DLP's apart.
358  bool AlmostEquals(const FloatingPoint& rhs) const {
359  // The IEEE standard says that any comparison operation involving
360  // a NAN must return false.
361  if (is_nan() || rhs.is_nan()) return false;
362 
364  <= kMaxUlps;
365  }
366 
367  private:
368  // The data type used to store the actual floating-point number.
370  RawType value_; // The raw floating-point number.
371  Bits bits_; // The bits that represent the number.
372  };
373 
374  // Converts an integer from the sign-and-magnitude representation to
375  // the biased representation. More precisely, let N be 2 to the
376  // power of (kBitCount - 1), an integer x is represented by the
377  // unsigned number x + N.
378  //
379  // For instance,
380  //
381  // -N + 1 (the most negative number representable using
382  // sign-and-magnitude) is represented by 1;
383  // 0 is represented by N; and
384  // N - 1 (the biggest number representable using
385  // sign-and-magnitude) is represented by 2N - 1.
386  //
387  // Read http://en.wikipedia.org/wiki/Signed_number_representations
388  // for more details on signed number representations.
389  static Bits SignAndMagnitudeToBiased(const Bits &sam) {
390  if (kSignBitMask & sam) {
391  // sam represents a negative number.
392  return ~sam + 1;
393  } else {
394  // sam represents a positive number.
395  return kSignBitMask | sam;
396  }
397  }
398 
399  // Given two numbers in the sign-and-magnitude representation,
400  // returns the distance between them as an unsigned number.
402  const Bits &sam2) {
403  const Bits biased1 = SignAndMagnitudeToBiased(sam1);
404  const Bits biased2 = SignAndMagnitudeToBiased(sam2);
405  return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
406  }
407 
409 };
410 
411 // We cannot use std::numeric_limits<T>::max() as it clashes with the max()
412 // macro defined by <windows.h>.
413 template <>
414 inline float FloatingPoint<float>::Max() { return FLT_MAX; }
415 template <>
416 inline double FloatingPoint<double>::Max() { return DBL_MAX; }
417 
418 // Typedefs the instances of the FloatingPoint template class that we
419 // care to use.
422 
423 // In order to catch the mistake of putting tests that use different
424 // test fixture classes in the same test case, we need to assign
425 // unique IDs to fixture classes and compare them. The TypeId type is
426 // used to hold such IDs. The user should treat TypeId as an opaque
427 // type: the only operation allowed on TypeId values is to compare
428 // them for equality using the == operator.
429 typedef const void* TypeId;
430 
431 template <typename T>
433  public:
434  // dummy_ must not have a const type. Otherwise an overly eager
435  // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
436  // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
437  static bool dummy_;
438 };
439 
440 template <typename T>
441 bool TypeIdHelper<T>::dummy_ = false;
442 
443 // GetTypeId<T>() returns the ID of type T. Different values will be
444 // returned for different types. Calling the function twice with the
445 // same type argument is guaranteed to return the same ID.
446 template <typename T>
448  // The compiler is required to allocate a different
449  // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
450  // the template. Therefore, the address of dummy_ is guaranteed to
451  // be unique.
452  return &(TypeIdHelper<T>::dummy_);
453 }
454 
455 // Returns the type ID of ::testing::Test. Always call this instead
456 // of GetTypeId< ::testing::Test>() to get the type ID of
457 // ::testing::Test, as the latter may give the wrong result due to a
458 // suspected linker bug when compiling Google Test as a Mac OS X
459 // framework.
461 
462 // Defines the abstract factory interface that creates instances
463 // of a Test object.
465  public:
466  virtual ~TestFactoryBase() {}
467 
468  // Creates a test instance to run. The instance is both created and destroyed
469  // within TestInfoImpl::Run()
470  virtual Test* CreateTest() = 0;
471 
472  protected:
474 
475  private:
477 };
478 
479 // This class provides implementation of TeastFactoryBase interface.
480 // It is used in TEST and TEST_F macros.
481 template <class TestClass>
483  public:
484  virtual Test* CreateTest() { return new TestClass; }
485 };
486 
487 #if GTEST_OS_WINDOWS
488 
489 // Predicate-formatters for implementing the HRESULT checking macros
490 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
491 // We pass a long instead of HRESULT to avoid causing an
492 // include dependency for the HRESULT type.
493 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
494  long hr); // NOLINT
495 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
496  long hr); // NOLINT
497 
498 #endif // GTEST_OS_WINDOWS
499 
500 // Types of SetUpTestCase() and TearDownTestCase() functions.
501 typedef void (*SetUpTestCaseFunc)();
502 typedef void (*TearDownTestCaseFunc)();
503 
504 struct CodeLocation {
505  CodeLocation(const string& a_file, int a_line) : file(a_file), line(a_line) {}
506 
507  string file;
508  int line;
509 };
510 
511 // Creates a new TestInfo object and registers it with Google Test;
512 // returns the created object.
513 //
514 // Arguments:
515 //
516 // test_case_name: name of the test case
517 // name: name of the test
518 // type_param the name of the test's type parameter, or NULL if
519 // this is not a typed or a type-parameterized test.
520 // value_param text representation of the test's value parameter,
521 // or NULL if this is not a type-parameterized test.
522 // code_location: code location where the test is defined
523 // fixture_class_id: ID of the test fixture class
524 // set_up_tc: pointer to the function that sets up the test case
525 // tear_down_tc: pointer to the function that tears down the test case
526 // factory: pointer to the factory that creates a test object.
527 // The newly created TestInfo instance will assume
528 // ownership of the factory object.
530  const char* test_case_name,
531  const char* name,
532  const char* type_param,
533  const char* value_param,
534  CodeLocation code_location,
535  TypeId fixture_class_id,
536  SetUpTestCaseFunc set_up_tc,
537  TearDownTestCaseFunc tear_down_tc,
538  TestFactoryBase* factory);
539 
540 // If *pstr starts with the given prefix, modifies *pstr to be right
541 // past the prefix and returns true; otherwise leaves *pstr unchanged
542 // and returns false. None of pstr, *pstr, and prefix can be NULL.
543 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
544 
545 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
546 
547 // State of the definition of a type-parameterized test case.
548 class GTEST_API_ TypedTestCasePState {
549  public:
550  TypedTestCasePState() : registered_(false) {}
551 
552  // Adds the given test name to defined_test_names_ and return true
553  // if the test case hasn't been registered; otherwise aborts the
554  // program.
555  bool AddTestName(const char* file, int line, const char* case_name,
556  const char* test_name) {
557  if (registered_) {
558  fprintf(stderr, "%s Test %s must be defined before "
559  "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
560  FormatFileLocation(file, line).c_str(), test_name, case_name);
561  fflush(stderr);
562  posix::Abort();
563  }
564  registered_tests_.insert(
565  ::std::make_pair(test_name, CodeLocation(file, line)));
566  return true;
567  }
568 
569  bool TestExists(const std::string& test_name) const {
570  return registered_tests_.count(test_name) > 0;
571  }
572 
573  const CodeLocation& GetCodeLocation(const std::string& test_name) const {
574  RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name);
575  GTEST_CHECK_(it != registered_tests_.end());
576  return it->second;
577  }
578 
579  // Verifies that registered_tests match the test names in
580  // defined_test_names_; returns registered_tests if successful, or
581  // aborts the program otherwise.
582  const char* VerifyRegisteredTestNames(
583  const char* file, int line, const char* registered_tests);
584 
585  private:
586  typedef ::std::map<std::string, CodeLocation> RegisteredTestsMap;
587 
588  bool registered_;
589  RegisteredTestsMap registered_tests_;
590 };
591 
592 // Skips to the first non-space char after the first comma in 'str';
593 // returns NULL if no comma is found in 'str'.
594 inline const char* SkipComma(const char* str) {
595  const char* comma = strchr(str, ',');
596  if (comma == NULL) {
597  return NULL;
598  }
599  while (IsSpace(*(++comma))) {}
600  return comma;
601 }
602 
603 // Returns the prefix of 'str' before the first comma in it; returns
604 // the entire string if it contains no comma.
605 inline std::string GetPrefixUntilComma(const char* str) {
606  const char* comma = strchr(str, ',');
607  return comma == NULL ? str : std::string(str, comma);
608 }
609 
610 // Splits a given string on a given delimiter, populating a given
611 // vector with the fields.
612 void SplitString(const ::std::string& str, char delimiter,
613  ::std::vector< ::std::string>* dest);
614 
615 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
616 // registers a list of type-parameterized tests with Google Test. The
617 // return value is insignificant - we just need to return something
618 // such that we can call this function in a namespace scope.
619 //
620 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
621 // template parameter. It's defined in gtest-type-util.h.
622 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
623 class TypeParameterizedTest {
624  public:
625  // 'index' is the index of the test in the type list 'Types'
626  // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
627  // Types). Valid values for 'index' are [0, N - 1] where N is the
628  // length of Types.
629  static bool Register(const char* prefix,
630  CodeLocation code_location,
631  const char* case_name, const char* test_names,
632  int index) {
633  typedef typename Types::Head Type;
634  typedef Fixture<Type> FixtureClass;
635  typedef typename GTEST_BIND_(TestSel, Type) TestClass;
636 
637  // First, registers the first type-parameterized test in the type
638  // list.
640  (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name + "/"
641  + StreamableToString(index)).c_str(),
642  StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
643  GetTypeName<Type>().c_str(),
644  NULL, // No value parameter.
645  code_location,
646  GetTypeId<FixtureClass>(),
647  TestClass::SetUpTestCase,
648  TestClass::TearDownTestCase,
649  new TestFactoryImpl<TestClass>);
650 
651  // Next, recurses (at compile time) with the tail of the type list.
652  return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>
653  ::Register(prefix, code_location, case_name, test_names, index + 1);
654  }
655 };
656 
657 // The base case for the compile time recursion.
658 template <GTEST_TEMPLATE_ Fixture, class TestSel>
659 class TypeParameterizedTest<Fixture, TestSel, Types0> {
660  public:
661  static bool Register(const char* /*prefix*/, CodeLocation,
662  const char* /*case_name*/, const char* /*test_names*/,
663  int /*index*/) {
664  return true;
665  }
666 };
667 
668 // TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
669 // registers *all combinations* of 'Tests' and 'Types' with Google
670 // Test. The return value is insignificant - we just need to return
671 // something such that we can call this function in a namespace scope.
672 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
673 class TypeParameterizedTestCase {
674  public:
675  static bool Register(const char* prefix, CodeLocation code_location,
676  const TypedTestCasePState* state,
677  const char* case_name, const char* test_names) {
678  std::string test_name = StripTrailingSpaces(
679  GetPrefixUntilComma(test_names));
680  if (!state->TestExists(test_name)) {
681  fprintf(stderr, "Failed to get code location for test %s.%s at %s.",
682  case_name, test_name.c_str(),
683  FormatFileLocation(code_location.file.c_str(),
684  code_location.line).c_str());
685  fflush(stderr);
686  posix::Abort();
687  }
688  const CodeLocation& test_location = state->GetCodeLocation(test_name);
689 
690  typedef typename Tests::Head Head;
691 
692  // First, register the first test in 'Test' for each type in 'Types'.
693  TypeParameterizedTest<Fixture, Head, Types>::Register(
694  prefix, test_location, case_name, test_names, 0);
695 
696  // Next, recurses (at compile time) with the tail of the test list.
697  return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>
698  ::Register(prefix, code_location, state,
699  case_name, SkipComma(test_names));
700  }
701 };
702 
703 // The base case for the compile time recursion.
704 template <GTEST_TEMPLATE_ Fixture, typename Types>
705 class TypeParameterizedTestCase<Fixture, Templates0, Types> {
706  public:
707  static bool Register(const char* /*prefix*/, CodeLocation,
708  const TypedTestCasePState* /*state*/,
709  const char* /*case_name*/, const char* /*test_names*/) {
710  return true;
711  }
712 };
713 
714 #endif // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
715 
716 // Returns the current OS stack trace as an std::string.
717 //
718 // The maximum number of stack frames to be included is specified by
719 // the gtest_stack_trace_depth flag. The skip_count parameter
720 // specifies the number of top frames to be skipped, which doesn't
721 // count against the number of frames to be included.
722 //
723 // For example, if Foo() calls Bar(), which in turn calls
724 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
725 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
727  UnitTest* unit_test, int skip_count);
728 
729 // Helpers for suppressing warnings on unreachable code or constant
730 // condition.
731 
732 // Always returns true.
733 GTEST_API_ bool AlwaysTrue();
734 
735 // Always returns false.
736 inline bool AlwaysFalse() { return !AlwaysTrue(); }
737 
738 // Helper for suppressing false warning from Clang on a const char*
739 // variable declared in a conditional expression always being NULL in
740 // the else branch.
742  ConstCharPtr(const char* str) : value(str) {}
743  operator bool() const { return true; }
744  const char* value;
745 };
746 
747 // A simple Linear Congruential Generator for generating random
748 // numbers with a uniform distribution. Unlike rand() and srand(), it
749 // doesn't use global state (and therefore can't interfere with user
750 // code). Unlike rand_r(), it's portable. An LCG isn't very random,
751 // but it's good enough for our purposes.
753  public:
754  static const UInt32 kMaxRange = 1u << 31;
755 
756  explicit Random(UInt32 seed) : state_(seed) {}
757 
758  void Reseed(UInt32 seed) { state_ = seed; }
759 
760  // Generates a random number from [0, range). Crashes if 'range' is
761  // 0 or greater than kMaxRange.
762  UInt32 Generate(UInt32 range);
763 
764  private:
767 };
768 
769 // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
770 // compiler error iff T1 and T2 are different types.
771 template <typename T1, typename T2>
773 
774 template <typename T>
776 };
777 
778 // Removes the reference from a type if it is a reference type,
779 // otherwise leaves it unchanged. This is the same as
780 // tr1::remove_reference, which is not widely available yet.
781 template <typename T>
782 struct RemoveReference { typedef T type; }; // NOLINT
783 template <typename T>
784 struct RemoveReference<T&> { typedef T type; }; // NOLINT
785 
786 // A handy wrapper around RemoveReference that works when the argument
787 // T depends on template parameters.
788 #define GTEST_REMOVE_REFERENCE_(T) \
789  typename ::testing::internal::RemoveReference<T>::type
790 
791 // Removes const from a type if it is a const type, otherwise leaves
792 // it unchanged. This is the same as tr1::remove_const, which is not
793 // widely available yet.
794 template <typename T>
795 struct RemoveConst { typedef T type; }; // NOLINT
796 template <typename T>
797 struct RemoveConst<const T> { typedef T type; }; // NOLINT
798 
799 // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
800 // definition to fail to remove the const in 'const int[3]' and 'const
801 // char[3][4]'. The following specialization works around the bug.
802 template <typename T, size_t N>
803 struct RemoveConst<const T[N]> {
804  typedef typename RemoveConst<T>::type type[N];
805 };
806 
807 #if defined(_MSC_VER) && _MSC_VER < 1400
808 // This is the only specialization that allows VC++ 7.1 to remove const in
809 // 'const int[3] and 'const int[3][4]'. However, it causes trouble with GCC
810 // and thus needs to be conditionally compiled.
811 template <typename T, size_t N>
812 struct RemoveConst<T[N]> {
813  typedef typename RemoveConst<T>::type type[N];
814 };
815 #endif
816 
817 // A handy wrapper around RemoveConst that works when the argument
818 // T depends on template parameters.
819 #define GTEST_REMOVE_CONST_(T) \
820  typename ::testing::internal::RemoveConst<T>::type
821 
822 // Turns const U&, U&, const U, and U all into U.
823 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
824  GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
825 
826 // Adds reference to a type if it is not a reference type,
827 // otherwise leaves it unchanged. This is the same as
828 // tr1::add_reference, which is not widely available yet.
829 template <typename T>
830 struct AddReference { typedef T& type; }; // NOLINT
831 template <typename T>
832 struct AddReference<T&> { typedef T& type; }; // NOLINT
833 
834 // A handy wrapper around AddReference that works when the argument T
835 // depends on template parameters.
836 #define GTEST_ADD_REFERENCE_(T) \
837  typename ::testing::internal::AddReference<T>::type
838 
839 // Adds a reference to const on top of T as necessary. For example,
840 // it transforms
841 //
842 // char ==> const char&
843 // const char ==> const char&
844 // char& ==> const char&
845 // const char& ==> const char&
846 //
847 // The argument T must depend on some template parameters.
848 #define GTEST_REFERENCE_TO_CONST_(T) \
849  GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
850 
851 // ImplicitlyConvertible<From, To>::value is a compile-time bool
852 // constant that's true iff type From can be implicitly converted to
853 // type To.
854 template <typename From, typename To>
856  private:
857  // We need the following helper functions only for their types.
858  // They have no implementations.
859 
860  // MakeFrom() is an expression whose type is From. We cannot simply
861  // use From(), as the type From may not have a public default
862  // constructor.
863  static typename AddReference<From>::type MakeFrom();
864 
865  // These two functions are overloaded. Given an expression
866  // Helper(x), the compiler will pick the first version if x can be
867  // implicitly converted to type To; otherwise it will pick the
868  // second version.
869  //
870  // The first version returns a value of size 1, and the second
871  // version returns a value of size 2. Therefore, by checking the
872  // size of Helper(x), which can be done at compile time, we can tell
873  // which version of Helper() is used, and hence whether x can be
874  // implicitly converted to type To.
875  static char Helper(To);
876  static char (&Helper(...))[2]; // NOLINT
877 
878  // We have to put the 'public' section after the 'private' section,
879  // or MSVC refuses to compile the code.
880  public:
881 #if defined(__BORLANDC__)
882  // C++Builder cannot use member overload resolution during template
883  // instantiation. The simplest workaround is to use its C++0x type traits
884  // functions (C++Builder 2009 and above only).
885  static const bool value = __is_convertible(From, To);
886 #else
887  // MSVC warns about implicitly converting from double to int for
888  // possible loss of data, so we need to temporarily disable the
889  // warning.
891  static const bool value =
892  sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
894 #endif // __BORLANDC__
895 };
896 template <typename From, typename To>
898 
899 // IsAProtocolMessage<T>::value is a compile-time bool constant that's
900 // true iff T is type ProtocolMessage, proto2::Message, or a subclass
901 // of those.
902 template <typename T>
904  : public bool_constant<
905  ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
906  ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
907 };
908 
909 // When the compiler sees expression IsContainerTest<C>(0), if C is an
910 // STL-style container class, the first overload of IsContainerTest
911 // will be viable (since both C::iterator* and C::const_iterator* are
912 // valid types and NULL can be implicitly converted to them). It will
913 // be picked over the second overload as 'int' is a perfect match for
914 // the type of argument 0. If C::iterator or C::const_iterator is not
915 // a valid type, the first overload is not viable, and the second
916 // overload will be picked. Therefore, we can determine whether C is
917 // a container class by checking the type of IsContainerTest<C>(0).
918 // The value of the expression is insignificant.
919 //
920 // Note that we look for both C::iterator and C::const_iterator. The
921 // reason is that C++ injects the name of a class as a member of the
922 // class itself (e.g. you can refer to class iterator as either
923 // 'iterator' or 'iterator::iterator'). If we look for C::iterator
924 // only, for example, we would mistakenly think that a class named
925 // iterator is an STL container.
926 //
927 // Also note that the simpler approach of overloading
928 // IsContainerTest(typename C::const_iterator*) and
929 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
930 typedef int IsContainer;
931 template <class C>
932 IsContainer IsContainerTest(int /* dummy */,
933  typename C::iterator* /* it */ = NULL,
934  typename C::const_iterator* /* const_it */ = NULL) {
935  return 0;
936 }
937 
938 typedef char IsNotContainer;
939 template <class C>
940 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
941 
942 // EnableIf<condition>::type is void when 'Cond' is true, and
943 // undefined when 'Cond' is false. To use SFINAE to make a function
944 // overload only apply when a particular expression is true, add
945 // "typename EnableIf<expression>::type* = 0" as the last parameter.
946 template<bool> struct EnableIf;
947 template<> struct EnableIf<true> { typedef void type; }; // NOLINT
948 
949 // Utilities for native arrays.
950 
951 // ArrayEq() compares two k-dimensional native arrays using the
952 // elements' operator==, where k can be any integer >= 0. When k is
953 // 0, ArrayEq() degenerates into comparing a single pair of values.
954 
955 template <typename T, typename U>
956 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
957 
958 // This generic version is used when k is 0.
959 template <typename T, typename U>
960 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
961 
962 // This overload is used when k >= 1.
963 template <typename T, typename U, size_t N>
964 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
965  return internal::ArrayEq(lhs, N, rhs);
966 }
967 
968 // This helper reduces code bloat. If we instead put its logic inside
969 // the previous ArrayEq() function, arrays with different sizes would
970 // lead to different copies of the template code.
971 template <typename T, typename U>
972 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
973  for (size_t i = 0; i != size; i++) {
974  if (!internal::ArrayEq(lhs[i], rhs[i]))
975  return false;
976  }
977  return true;
978 }
979 
980 // Finds the first element in the iterator range [begin, end) that
981 // equals elem. Element may be a native array type itself.
982 template <typename Iter, typename Element>
983 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
984  for (Iter it = begin; it != end; ++it) {
985  if (internal::ArrayEq(*it, elem))
986  return it;
987  }
988  return end;
989 }
990 
991 // CopyArray() copies a k-dimensional native array using the elements'
992 // operator=, where k can be any integer >= 0. When k is 0,
993 // CopyArray() degenerates into copying a single value.
994 
995 template <typename T, typename U>
996 void CopyArray(const T* from, size_t size, U* to);
997 
998 // This generic version is used when k is 0.
999 template <typename T, typename U>
1000 inline void CopyArray(const T& from, U* to) { *to = from; }
1001 
1002 // This overload is used when k >= 1.
1003 template <typename T, typename U, size_t N>
1004 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
1005  internal::CopyArray(from, N, *to);
1006 }
1007 
1008 // This helper reduces code bloat. If we instead put its logic inside
1009 // the previous CopyArray() function, arrays with different sizes
1010 // would lead to different copies of the template code.
1011 template <typename T, typename U>
1012 void CopyArray(const T* from, size_t size, U* to) {
1013  for (size_t i = 0; i != size; i++) {
1014  internal::CopyArray(from[i], to + i);
1015  }
1016 }
1017 
1018 // The relation between an NativeArray object (see below) and the
1019 // native array it represents.
1020 // We use 2 different structs to allow non-copyable types to be used, as long
1021 // as RelationToSourceReference() is passed.
1024 
1025 // Adapts a native array to a read-only STL-style container. Instead
1026 // of the complete STL container concept, this adaptor only implements
1027 // members useful for Google Mock's container matchers. New members
1028 // should be added as needed. To simplify the implementation, we only
1029 // support Element being a raw type (i.e. having no top-level const or
1030 // reference modifier). It's the client's responsibility to satisfy
1031 // this requirement. Element can be an array type itself (hence
1032 // multi-dimensional arrays are supported).
1033 template <typename Element>
1035  public:
1036  // STL-style container typedefs.
1037  typedef Element value_type;
1038  typedef Element* iterator;
1039  typedef const Element* const_iterator;
1040 
1041  // Constructs from a native array. References the source.
1043  InitRef(array, count);
1044  }
1045 
1046  // Constructs from a native array. Copies the source.
1047  NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
1048  InitCopy(array, count);
1049  }
1050 
1051  // Copy constructor.
1053  (this->*rhs.clone_)(rhs.array_, rhs.size_);
1054  }
1055 
1057  if (clone_ != &NativeArray::InitRef)
1058  delete[] array_;
1059  }
1060 
1061  // STL-style container methods.
1062  size_t size() const { return size_; }
1063  const_iterator begin() const { return array_; }
1064  const_iterator end() const { return array_ + size_; }
1065  bool operator==(const NativeArray& rhs) const {
1066  return size() == rhs.size() &&
1067  ArrayEq(begin(), size(), rhs.begin());
1068  }
1069 
1070  private:
1071  enum {
1072  kCheckTypeIsNotConstOrAReference = StaticAssertTypeEqHelper<
1073  Element, GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>::value,
1074  };
1075 
1076  // Initializes this object with a copy of the input.
1077  void InitCopy(const Element* array, size_t a_size) {
1078  Element* const copy = new Element[a_size];
1079  CopyArray(array, a_size, copy);
1080  array_ = copy;
1081  size_ = a_size;
1082  clone_ = &NativeArray::InitCopy;
1083  }
1084 
1085  // Initializes this object with a reference of the input.
1086  void InitRef(const Element* array, size_t a_size) {
1087  array_ = array;
1088  size_ = a_size;
1089  clone_ = &NativeArray::InitRef;
1090  }
1091 
1092  const Element* array_;
1093  size_t size_;
1094  void (NativeArray::*clone_)(const Element*, size_t);
1095 
1097 };
1098 
1099 } // namespace internal
1100 } // namespace testing
1101 
1102 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
1103  ::testing::internal::AssertHelper(result_type, file, line, message) \
1104  = ::testing::Message()
1105 
1106 #define GTEST_MESSAGE_(message, result_type) \
1107  GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1108 
1109 #define GTEST_FATAL_FAILURE_(message) \
1110  return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1111 
1112 #define GTEST_NONFATAL_FAILURE_(message) \
1113  GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1114 
1115 #define GTEST_SUCCESS_(message) \
1116  GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1117 
1118 // Suppresses MSVC warnings 4072 (unreachable code) for the code following
1119 // statement if it returns or throws (or doesn't return or throw in some
1120 // situations).
1121 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1122  if (::testing::internal::AlwaysTrue()) { statement; }
1123 
1124 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
1125  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1126  if (::testing::internal::ConstCharPtr gtest_msg = "") { \
1127  bool gtest_caught_expected = false; \
1128  try { \
1129  GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1130  } \
1131  catch (expected_exception const&) { \
1132  gtest_caught_expected = true; \
1133  } \
1134  catch (...) { \
1135  gtest_msg.value = \
1136  "Expected: " #statement " throws an exception of type " \
1137  #expected_exception ".\n Actual: it throws a different type."; \
1138  goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1139  } \
1140  if (!gtest_caught_expected) { \
1141  gtest_msg.value = \
1142  "Expected: " #statement " throws an exception of type " \
1143  #expected_exception ".\n Actual: it throws nothing."; \
1144  goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1145  } \
1146  } else \
1147  GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
1148  fail(gtest_msg.value)
1149 
1150 #define GTEST_TEST_NO_THROW_(statement, fail) \
1151  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1152  if (::testing::internal::AlwaysTrue()) { \
1153  try { \
1154  GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1155  } \
1156  catch (...) { \
1157  goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1158  } \
1159  } else \
1160  GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
1161  fail("Expected: " #statement " doesn't throw an exception.\n" \
1162  " Actual: it throws.")
1163 
1164 #define GTEST_TEST_ANY_THROW_(statement, fail) \
1165  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1166  if (::testing::internal::AlwaysTrue()) { \
1167  bool gtest_caught_any = false; \
1168  try { \
1169  GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1170  } \
1171  catch (...) { \
1172  gtest_caught_any = true; \
1173  } \
1174  if (!gtest_caught_any) { \
1175  goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1176  } \
1177  } else \
1178  GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
1179  fail("Expected: " #statement " throws an exception.\n" \
1180  " Actual: it doesn't.")
1181 
1182 
1183 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1184 // either a boolean expression or an AssertionResult. text is a textual
1185 // represenation of expression as it was passed into the EXPECT_TRUE.
1186 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1187  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1188  if (const ::testing::AssertionResult gtest_ar_ = \
1189  ::testing::AssertionResult(expression)) \
1190  ; \
1191  else \
1192  fail(::testing::internal::GetBoolAssertionFailureMessage(\
1193  gtest_ar_, text, #actual, #expected).c_str())
1194 
1195 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
1196  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1197  if (::testing::internal::AlwaysTrue()) { \
1198  ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
1199  GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1200  if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
1201  goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1202  } \
1203  } else \
1204  GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
1205  fail("Expected: " #statement " doesn't generate new fatal " \
1206  "failures in the current thread.\n" \
1207  " Actual: it does.")
1208 
1209 // Expands to the name of the class that implements the given test.
1210 #define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
1211  test_case_name##_##test_name##_Test
1212 
1213 // Helper macro for defining tests.
1214 #define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
1215 class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
1216  public:\
1217  GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
1218  private:\
1219  virtual void TestBody();\
1220  static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
1221  GTEST_DISALLOW_COPY_AND_ASSIGN_(\
1222  GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
1223 };\
1224 \
1225 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
1226  ::test_info_ =\
1227  ::testing::internal::MakeAndRegisterTestInfo(\
1228  #test_case_name, #test_name, NULL, NULL, \
1229  ::testing::internal::CodeLocation(__FILE__, __LINE__), \
1230  (parent_id), \
1231  parent_class::SetUpTestCase, \
1232  parent_class::TearDownTestCase, \
1233  new ::testing::internal::TestFactoryImpl<\
1234  GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
1235 void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
1236 
1237 #endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
1238